BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 18957218)

  • 1. Bhlhb5 regulates the postmitotic acquisition of area identities in layers II-V of the developing neocortex.
    Joshi PS; Molyneaux BJ; Feng L; Xie X; Macklis JD; Gan L
    Neuron; 2008 Oct; 60(2):258-72. PubMed ID: 18957218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EMX2 regulates sizes and positioning of the primary sensory and motor areas in neocortex by direct specification of cortical progenitors.
    Hamasaki T; Leingärtner A; Ringstedt T; O'Leary DD
    Neuron; 2004 Aug; 43(3):359-72. PubMed ID: 15294144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A screen for downstream effectors of Neurogenin2 in the embryonic neocortex.
    Mattar P; Britz O; Johannes C; Nieto M; Ma L; Rebeyka A; Klenin N; Polleux F; Guillemot F; Schuurmans C
    Dev Biol; 2004 Sep; 273(2):373-89. PubMed ID: 15328020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential expression of COUP-TFI, CHL1, and two novel genes in developing neocortex identified by differential display PCR.
    Liu Q; Dwyer ND; O'Leary DD
    J Neurosci; 2000 Oct; 20(20):7682-90. PubMed ID: 11027229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex.
    Bedogni F; Hodge RD; Elsen GE; Nelson BR; Daza RA; Beyer RP; Bammler TK; Rubenstein JL; Hevner RF
    Proc Natl Acad Sci U S A; 2010 Jul; 107(29):13129-34. PubMed ID: 20615956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cited2 Regulates Neocortical Layer II/III Generation and Somatosensory Callosal Projection Neuron Development and Connectivity.
    Fame RM; MacDonald JL; Dunwoodie SL; Takahashi E; Macklis JD
    J Neurosci; 2016 Jun; 36(24):6403-19. PubMed ID: 27307230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COUP-TFI regulates the balance of cortical patterning between frontal/motor and sensory areas.
    Armentano M; Chou SJ; Tomassy GS; Leingärtner A; O'Leary DD; Studer M
    Nat Neurosci; 2007 Oct; 10(10):1277-86. PubMed ID: 17828260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chalk one up for 'nature' during neocortical neurogenesis.
    Mizutani K; Gaiano N
    Nat Neurosci; 2006 Jun; 9(6):717-8. PubMed ID: 16732198
    [No Abstract]   [Full Text] [Related]  

  • 9. Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior-posterior cortical area patterning.
    Sahara S; Kawakami Y; Izpisua Belmonte JC; O'Leary DD
    Neural Dev; 2007 May; 2():10. PubMed ID: 17509151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postmitotic regulation of sensory area patterning in the mammalian neocortex by Lhx2.
    Zembrzycki A; Perez-Garcia CG; Wang CF; Chou SJ; O'Leary DD
    Proc Natl Acad Sci U S A; 2015 May; 112(21):6736-41. PubMed ID: 25971728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulinoma-associated 1 has a panneurogenic role and promotes the generation and expansion of basal progenitors in the developing mouse neocortex.
    Farkas LM; Haffner C; Giger T; Khaitovich P; Nowick K; Birchmeier C; Pääbo S; Huttner WB
    Neuron; 2008 Oct; 60(1):40-55. PubMed ID: 18940587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Migration of neocortical neuroblasts in rat fetuses during repeated exposure to x-rays.
    Chepur EA
    Neurosci Behav Physiol; 2002; 32(3):259-63. PubMed ID: 12135339
    [No Abstract]   [Full Text] [Related]  

  • 13. Corticospinal tract neurons are radially malpositioned in the sensory-motor cortex of the Shaking rat Kawasaki.
    Ikeda Y; Terashima T
    J Comp Neurol; 1997 Jul; 383(3):370-80. PubMed ID: 9205047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postmitotic control of sensory area specification during neocortical development.
    Alfano C; Magrinelli E; Harb K; Hevner RF; Studer M
    Nat Commun; 2014 Dec; 5():5632. PubMed ID: 25476200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ascl1 participates in Cajal-Retzius cell development in the neocortex.
    Dixit R; Zimmer C; Waclaw RR; Mattar P; Shaker T; Kovach C; Logan C; Campbell K; Guillemot F; Schuurmans C
    Cereb Cortex; 2011 Nov; 21(11):2599-611. PubMed ID: 21467208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validating in utero electroporation for the rapid analysis of gene regulatory elements in the murine telencephalon.
    Langevin LM; Mattar P; Scardigli R; Roussigné M; Logan C; Blader P; Schuurmans C
    Dev Dyn; 2007 May; 236(5):1273-86. PubMed ID: 17377980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of reelin-positive marginal zone cells from the caudomedial wall of telencephalic vesicles.
    Takiguchi-Hayashi K; Sekiguchi M; Ashigaki S; Takamatsu M; Hasegawa H; Suzuki-Migishima R; Yokoyama M; Nakanishi S; Tanabe Y
    J Neurosci; 2004 Mar; 24(9):2286-95. PubMed ID: 14999079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic regulation of arealization of the neocortex.
    O'Leary DD; Sahara S
    Curr Opin Neurobiol; 2008 Feb; 18(1):90-100. PubMed ID: 18524571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scratch2 modulates neurogenesis and cell migration through antagonism of bHLH proteins in the developing neocortex.
    Paul V; Tonchev AB; Henningfeld KA; Pavlakis E; Rust B; Pieler T; Stoykova A
    Cereb Cortex; 2014 Mar; 24(3):754-72. PubMed ID: 23180754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain.
    Corbin JG; Nery S; Fishell G
    Nat Neurosci; 2001 Nov; 4 Suppl():1177-82. PubMed ID: 11687827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.