These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 18957586)

  • 1. Carbon source-dependent modulation of NADP-glutamate dehydrogenases in isophthalate-degrading Pseudomonas aeruginosa strain PP4, Pseudomonas strain PPD and Acinetobacter lwoffii strain ISP4.
    Vamsee-Krishna C; Phale PS
    Microbiology (Reading); 2008 Nov; 154(Pt 11):3329-3337. PubMed ID: 18957586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bypassing isophthalate inhibition by modulating glutamate dehydrogenase (GDH): purification and kinetic characterization of NADP-GDHs from isophthalate-degrading Pseudomonas aeruginosa strain PP4 and Acinetobacter lwoffii strain ISP4.
    Vamsee-Krishna C; Phale PS
    J Bacteriol; 2010 Feb; 192(3):801-6. PubMed ID: 19933355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of phthalate isomers by Pseudomonas aeruginosa PP4, Pseudomonas sp. PPD and Acinetobacter lwoffii ISP4.
    Vamsee-Krishna C; Mohan Y; Phale PS
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1263-9. PubMed ID: 16607524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations affecting the synthesis of NADP-dependent glutamate dehydrogenase in Pseudomonas aeruginosa.
    Joannou CL; Brown PR; Tata R
    J Gen Microbiol; 1988 Feb; 134(2):441-52. PubMed ID: 2844962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Antarctic Psychrobacter sp. TAD1 has two cold-active glutamate dehydrogenases with different cofactor specificities. Characterisation of the NAD+-dependent enzyme.
    Camardella L; Di Fraia R; Antignani A; Ciardiello MA; di Prisco G; Coleman JK; Buchon L; Guespin J; Russell NJ
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Mar; 131(3):559-67. PubMed ID: 11867281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADP+-dependent glutamate dehydrogenase in the Antarctic psychrotolerant bacterium Psychrobacter sp. TAD1. Characterization, protein and DNA sequence, and relationship to other glutamate dehydrogenases.
    Di Fraia R; Wilquet V; Ciardiello MA; Carratore V; Antignani A; Camardella L; Glansdorff N; Di Prisco G
    Eur J Biochem; 2000 Jan; 267(1):121-31. PubMed ID: 10601858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delineation of an in vivo inhibitor for Aspergillus glutamate dehydrogenase.
    Choudhury R; Noor S; Varadarajalu LP; Punekar NS
    Enzyme Microb Technol; 2008 Jan; 42(2):151-9. PubMed ID: 22578865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allosteric NADP-glutamate dehydrogenase from aspergilli: purification, characterization and implications for metabolic regulation at the carbon-nitrogen interface.
    Noor S; Punekar NS
    Microbiology (Reading); 2005 May; 151(Pt 5):1409-1419. PubMed ID: 15870451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical and genetical studies of NADP-specific glutamate dehydrogenase in the fission yeast Schizosaccharomyces pombe.
    Perysinakis A; Kinghorn JR; Drainas C
    Curr Genet; 1994 Oct; 26(4):315-20. PubMed ID: 7882425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possible physiological roles of aspartase, NAD- and NADP-requiring glutamate dehydrogenases of Pseudomonas fluorescens.
    Miyamoto K; Katsuki H
    J Biochem; 1992 Jul; 112(1):52-6. PubMed ID: 1331036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significance of NADP/NAD glutamate dehydrogenase ratio in the dimorphic behavior of Benjaminiella poitrasii and its morphological mutants.
    Khale A; Srinivasan MC; Deshpande MV
    J Bacteriol; 1992 Jun; 174(11):3723-8. PubMed ID: 1592824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NAD-dependent glutamate dehydrogenase from Pseudomonas aeruginosa is a membrane-bound enzyme.
    Joannou CL; Brown PR
    FEMS Microbiol Lett; 1992 Jan; 69(2):205-9. PubMed ID: 1311277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology-associated expression of NADP-dependent glutamate dehydrogenases during yeast-mycelium transition of a dimorphic fungus Benjaminiella poitrasii.
    Amin A; Joshi M; Deshpande MV
    Antonie Van Leeuwenhoek; 2004 May; 85(4):327-34. PubMed ID: 15031645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADP-glutamate dehydrogenase activity in nonstarter lactic acid bacteria: effects of temperature, pH and NaCl on enzyme activity and expression.
    De Angelis M; Calasso M; Di Cagno R; Siragusa S; Minervini F; Gobbetti M
    J Appl Microbiol; 2010 Nov; 109(5):1763-74. PubMed ID: 20662973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The simultaneous determination of NAD(H) and NADP(H) utilization by glutamate dehydrogenase.
    Treberg JR; Brosnan ME; Brosnan JT
    Mol Cell Biochem; 2010 Nov; 344(1-2):253-9. PubMed ID: 20697932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic locking-on and auxiliary tactics for bioaffinity purification of NADP+-dependent dehydrogenases using N6-linked immobilized NADP+ derivatives: Studies with mammalian and microbial glutamate dehydrogenases.
    McMahon M; Tynan J; Mulcahy P
    Biotechnol Bioeng; 2003 Feb; 81(3):356-69. PubMed ID: 12474259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADP-glutamate dehydrogenase activity is increased under hyperosmotic conditions in the halotolerant yeast Debaryomyces hansenii.
    Alba-Lois L; Segal C; Rodarte B; Valdés-López V; DeLuna A; Cárdenas R
    Curr Microbiol; 2004 Jan; 48(1):68-72. PubMed ID: 15018106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular studies of NAD- and NADP-glutamate dehydrogenases decipher the conundrum of yeast-hypha dimorphism in zygomycete Benjaminiella poitrasii.
    Pathan EK; Ghormade V; Panwar SL; Prasad R; Deshpande MV
    FEMS Yeast Res; 2019 Dec; 19(8):. PubMed ID: 31644791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate dehydrogenases in the oleaginous yeast Yarrowia lipolytica.
    Trotter PJ; Juco K; Le HT; Nelson K; Tamayo LI; Nicaud JM; Park YK
    Yeast; 2020 Jan; 37(1):103-115. PubMed ID: 31119792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of preference for carbon source utilization among three strains of aromatic compounds degrading Pseudomonas.
    Karishma M; Trivedi VD; Choudhary A; Mhatre A; Kambli P; Desai J; Phale PS
    FEMS Microbiol Lett; 2015 Oct; 362(20):. PubMed ID: 26316546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.