BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 18957763)

  • 1. Comparing centralised and decentralised anaerobic digestion of stillage from a large-scale bioethanol plant to animal feed production.
    Drosg B; Wirthensohn T; Konrad G; Hornbachner D; Resch C; Wäger F; Loderer C; Waltenberger R; Kirchmayr R; Braun R
    Water Sci Technol; 2008; 58(7):1483-9. PubMed ID: 18957763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic digestion of stillage fractions - estimation of the potential for energy recovery in bioethanol plants.
    Drosg B; Fuchs W; Meixner K; Waltenberger R; Kirchmayr R; Braun R; Bochmann G
    Water Sci Technol; 2013; 67(3):494-505. PubMed ID: 23202552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic digestion of thin stillage for energy recovery and water reuse in corn-ethanol plants.
    Alkan-Ozkaynak A; Karthikeyan KG
    Bioresour Technol; 2011 Nov; 102(21):9891-6. PubMed ID: 21890343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Industrial symbiosis: corn ethanol fermentation, hydrothermal carbonization, and anaerobic digestion.
    Wood BM; Jader LR; Schendel FJ; Hahn NJ; Valentas KJ; McNamara PJ; Novak PM; Heilmann SM
    Biotechnol Bioeng; 2013 Oct; 110(10):2624-32. PubMed ID: 23568780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production.
    Fuess LT; Garcia ML
    J Environ Manage; 2015 Oct; 162():102-14. PubMed ID: 26233583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic digestion of whole stillage from dry-grind corn ethanol plant under mesophilic and thermophilic conditions.
    Eskicioglu C; Kennedy KJ; Marin J; Strehler B
    Bioresour Technol; 2011 Jan; 102(2):1079-86. PubMed ID: 20843681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing the logistics of anaerobic digestion of manure.
    Ghafoori E; Flynn PC
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):625-37. PubMed ID: 18478421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consequential environmental life cycle assessment of a farm-scale biogas plant.
    Van Stappen F; Mathot M; Decruyenaere V; Loriers A; Delcour A; Planchon V; Goffart JP; Stilmant D
    J Environ Manage; 2016 Jun; 175():20-32. PubMed ID: 27017269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life-cycle energy and environmental analysis of bioethanol production from cassava in Thailand.
    Papong S; Malakul P
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S112-8. PubMed ID: 19766487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of increasing energy crop addition on process performance and residual methane potential in anaerobic digestion.
    Lindorfer H; Pérez López C; Resch C; Braun R; Kirchmayr R
    Water Sci Technol; 2007; 56(10):55-63. PubMed ID: 18048977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-field study of anaerobic digestion full-scale plants (Part II): new approaches in monitoring and evaluating process efficiency.
    Schievano A; D'Imporzano G; Orzi V; Adani F
    Bioresour Technol; 2011 Oct; 102(19):8814-9. PubMed ID: 21807505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. State estimation for anaerobic digesters using the ADM1.
    Gaida D; Wolf C; Meyer C; Stuhlsatz A; Lippel J; Bäck T; Bongards M; McLoone S
    Water Sci Technol; 2012; 66(5):1088-95. PubMed ID: 22797239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters.
    Fuchs W; Drosg B
    Water Sci Technol; 2013; 67(9):1984-93. PubMed ID: 23656941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioethanol fermentation as alternative valorization route of agricultural digestate according to a biorefinery approach.
    Sambusiti C; Monlau F; Barakat A
    Bioresour Technol; 2016 Jul; 212():289-295. PubMed ID: 27115615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of digestate management options at a large anaerobic digestion plant.
    O'Shea R; Lin R; Wall DM; Browne JD; Murphy JD
    J Environ Manage; 2022 Sep; 317():115312. PubMed ID: 35751231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: comparison of pilot and full scale experiences.
    Cavinato C; Fatone F; Bolzonella D; Pavan P
    Bioresour Technol; 2010 Jan; 101(2):545-50. PubMed ID: 19747821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementing an energetic life cycle analysis to prove the benefits of lignocellulosic feedstocks with protein separation for the chemical industry from the existing bioethanol industry.
    Brehmer B; Sanders J
    Biotechnol Bioeng; 2009 Feb; 102(3):767-77. PubMed ID: 18949753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of digestate from a co-digestion biogas plant by means of vacuum evaporation: tests for process optimization and environmental sustainability.
    Chiumenti A; da Borso F; Chiumenti R; Teri F; Segantin P
    Waste Manag; 2013 Jun; 33(6):1339-44. PubMed ID: 23562449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process.
    Barta Z; Reczey K; Zacchi G
    Biotechnol Biofuels; 2010 Sep; 3():21. PubMed ID: 20843330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyelectrolyte flocculation of grain stillage for improved clarification and water recovery within bioethanol production facilities.
    Menkhaus TJ; Anderson J; Lane S; Waddell E
    Bioresour Technol; 2010 Apr; 101(7):2280-6. PubMed ID: 19962888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.