These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 18958247)

  • 1. Associative and non-associative plasticity in kenyon cells of the honeybee mushroom body.
    Szyszka P; Galkin A; Menzel R
    Front Syst Neurosci; 2008; 2():3. PubMed ID: 18958247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensory representation and learning-related plasticity in mushroom body extrinsic feedback neurons of the protocerebral tract.
    Haehnel M; Menzel R
    Front Syst Neurosci; 2010; 4():161. PubMed ID: 21212833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the honeybee brain.
    Okada R; Rybak J; Manz G; Menzel R
    J Neurosci; 2007 Oct; 27(43):11736-47. PubMed ID: 17959815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural Correlates of Odor Learning in the Presynaptic Microglomerular Circuitry in the Honeybee Mushroom Body Calyx.
    Haenicke J; Yamagata N; Zwaka H; Nawrot M; Menzel R
    eNeuro; 2018; 5(3):. PubMed ID: 29938214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine-Dependent Plasticity Is Heterogeneously Expressed by Presynaptic Calcium Activity across Individual Boutons of the
    Davidson AM; Kaushik S; Hige T
    eNeuro; 2023 Oct; 10(10):. PubMed ID: 37848287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain.
    Mauelshagen J
    J Neurophysiol; 1993 Feb; 69(2):609-25. PubMed ID: 8459289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimality of sparse olfactory representations is not affected by network plasticity.
    Assisi C; Stopfer M; Bazhenov M
    PLoS Comput Biol; 2020 Feb; 16(2):e1007461. PubMed ID: 32012160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive olfactory learning in Drosophila.
    Zhao C; Widmer YF; Diegelmann S; Petrovici MA; Sprecher SG; Senn W
    Sci Rep; 2021 Mar; 11(1):6795. PubMed ID: 33762640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principal component analysis of odor coding at the level of third-order olfactory neurons in Drosophila.
    Hiroi M; Ohkura M; Nakai J; Masuda N; Hashimoto K; Inoue K; Fiala A; Tabata T
    Genes Cells; 2013 Dec; 18(12):1070-81. PubMed ID: 24118654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging.
    Wang Y; Guo HF; Pologruto TA; Hannan F; Hakker I; Svoboda K; Zhong Y
    J Neurosci; 2004 Jul; 24(29):6507-14. PubMed ID: 15269261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trace Conditioning in
    Dylla KV; Raiser G; Galizia CG; Szyszka P
    Front Neural Circuits; 2017; 11():42. PubMed ID: 28676744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pairing-Dependent Plasticity in a Dissected Fly Brain Is Input-Specific and Requires Synaptic CaMKII Enrichment and Nighttime Sleep.
    Adel M; Chen N; Zhang Y; Reed ML; Quasney C; Griffith LC
    J Neurosci; 2022 May; 42(21):4297-4310. PubMed ID: 35474278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A linear discriminant analysis model of imbalanced associative learning in the mushroom body compartment.
    Lipshutz D; Kashalikar A; Farashahi S; Chklovskii DB
    PLoS Comput Biol; 2023 Feb; 19(2):e1010864. PubMed ID: 36745688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization of learning-induced synaptic plasticity in output neurons of the Drosophila mushroom body γ-lobe.
    Hancock CE; Rostami V; Rachad EY; Deimel SH; Nawrot MP; Fiala A
    Sci Rep; 2022 Jun; 12(1):10421. PubMed ID: 35729203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning-Dependent and -Independent Enhancement of Mitral/Tufted Cell Glomerular Odor Responses Following Olfactory Fear Conditioning in Awake Mice.
    Ross JM; Fletcher ML
    J Neurosci; 2018 May; 38(20):4623-4640. PubMed ID: 29669746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural correlates of odor learning in the honeybee antennal lobe.
    Denker M; Finke R; Schaupp F; Grün S; Menzel R
    Eur J Neurosci; 2010 Jan; 31(1):119-33. PubMed ID: 20104653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Focal uncaging of GABA reveals a temporally defined role for GABAergic inhibition during appetitive associative olfactory conditioning in honeybees.
    Raccuglia D; Mueller U
    Learn Mem; 2013 Jul; 20(8):410-6. PubMed ID: 23860600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium in Kenyon Cell Somata as a Substrate for an Olfactory Sensory Memory in
    Lüdke A; Raiser G; Nehrkorn J; Herz AVM; Galizia CG; Szyszka P
    Front Cell Neurosci; 2018; 12():128. PubMed ID: 29867361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies.
    Szyszka P; Ditzen M; Galkin A; Galizia CG; Menzel R
    J Neurophysiol; 2005 Nov; 94(5):3303-13. PubMed ID: 16014792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mushroom body output neurons encode odor-reward associations.
    Strube-Bloss MF; Nawrot MP; Menzel R
    J Neurosci; 2011 Feb; 31(8):3129-40. PubMed ID: 21414933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.