BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 18958316)

  • 1. Time-resolved methods in biophysics. 8. Frequency domain fluorometry: applications to intrinsic protein fluorescence.
    Ross JA; Jameson DM
    Photochem Photobiol Sci; 2008 Nov; 7(11):1301-12. PubMed ID: 18958316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency domain fluorometry: theory and application.
    Vetromile CM; Jameson DM
    Methods Mol Biol; 2014; 1076():77-95. PubMed ID: 24108624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins.
    Radu I; Schleeger M; Bolwien C; Heberle J
    Photochem Photobiol Sci; 2009 Nov; 8(11):1517-28. PubMed ID: 19862409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Time-resolved fluorometry: principles and applications in clinical biology].
    Gaillard O; Kapel N; Galli J; Delattre J; Meillet D
    Ann Biol Clin (Paris); 1994; 52(11):751-5. PubMed ID: 7747882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence anisotropy in the frequency domain by an optical microscope.
    Collini M; D'Alfonso L; Baldini G; Oldani A; Cellai L; Giordano C; Barone F; Mazzei F; Chirico G
    Appl Spectrosc; 2004 Feb; 58(2):160-5. PubMed ID: 15000709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free detection of single protein molecules using deep UV fluorescence lifetime microscopy.
    Li Q; Seeger S
    Anal Chem; 2006 Apr; 78(8):2732-7. PubMed ID: 16615786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence decay characteristics of indole compounds revealed by time-resolved area-normalized emission spectroscopy.
    Otosu T; Nishimoto E; Yamashita S
    J Phys Chem A; 2009 Mar; 113(12):2847-53. PubMed ID: 19254015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved methods in biophysics. 3. Fluorescence lifetime correlation spectroscopy.
    Gregor I; Enderlein J
    Photochem Photobiol Sci; 2007 Jan; 6(1):13-8. PubMed ID: 17200732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved emission spectroscopy as a tool to follow nucleic acid-protein interaction.
    Bhargava P; Gopal V; Mayalagu S; Chatterji D
    Indian J Biochem Biophys; 1995 Dec; 32(6):322-8. PubMed ID: 8714199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency domain fluorometry with pulsed light-emitting diodes.
    Herman P; Vecer J
    Ann N Y Acad Sci; 2008; 1130():56-61. PubMed ID: 18596332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved methods in biophysics. 5. Femtosecond time-resolved and dispersed infrared spectroscopy on proteins.
    Groot ML; van Wilderen LJ; Di Donato M
    Photochem Photobiol Sci; 2007 May; 6(5):501-7. PubMed ID: 17487299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic modelling approaches to in vivo imaging.
    Phair RD; Misteli T
    Nat Rev Mol Cell Biol; 2001 Dec; 2(12):898-907. PubMed ID: 11733769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free detection of protein interactions using deep UV fluorescence lifetime microscopy.
    Li Q; Seeger S
    Anal Biochem; 2007 Aug; 367(1):104-10. PubMed ID: 17553449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence polarization/anisotropy approaches to study protein-ligand interactions: effects of errors and uncertainties.
    Jameson DM; Mocz G
    Methods Mol Biol; 2005; 305():301-22. PubMed ID: 15940004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does the dynamic Stokes shift report on slow protein hydration dynamics?
    Halle B; Nilsson L
    J Phys Chem B; 2009 Jun; 113(24):8210-3. PubMed ID: 19462949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-color two-photon excitation of intrinsic protein fluorescence: label-free observation of proteolytic digestion of bovine serum albumin.
    Quentmeier S; Quentmeier CC; Walla PJ; Gericke KH
    Chemphyschem; 2009 Jul; 10(9-10):1607-13. PubMed ID: 19156800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization and dynamics of tryptophan residues in tetrameric and monomeric soybean agglutinin: studies by steady-state and time-resolved fluorescence, phosphorescence and chemical modification.
    Molla AR; Maity SS; Ghosh S; Mandal DK
    Biochimie; 2009 Jul; 91(7):857-67. PubMed ID: 19383525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age dependency of nanosecond fluorescence characteristics in human arteries.
    Araki T; Tohno Y
    Front Med Biol Eng; 1996; 7(4):265-73. PubMed ID: 8956967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein aggregation probed by two-photon fluorescence correlation spectroscopy of native tryptophan.
    Sahoo B; Balaji J; Nag S; Kaushalya SK; Maiti S
    J Chem Phys; 2008 Aug; 129(7):075103. PubMed ID: 19044804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating tryptophan quenching of fluorescein fluorescence under protolytic equilibrium.
    Togashi DM; Szczupak B; Ryder AG; Calvet A; O'Loughlin M
    J Phys Chem A; 2009 Mar; 113(12):2757-67. PubMed ID: 19254018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.