These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 189587)

  • 21. Respiratory control in submitochondrial particles obtained by sonication.
    Vallin I
    Biochim Biophys Acta; 1968 Nov; 162(4):477-86. PubMed ID: 4302445
    [No Abstract]   [Full Text] [Related]  

  • 22. Further evidence for the pool function of ubiquinone as derived from the inhibition of the electron transport by antimycin.
    Kröger A; Klingenberg M
    Eur J Biochem; 1973 Nov; 39(2):313-23. PubMed ID: 4359626
    [No Abstract]   [Full Text] [Related]  

  • 23. Tetrahydrobiopterin, a cofactor in mitochondrial electron transfer. A soluble transfer system.
    Rembold H; Buff K
    Eur J Biochem; 1972 Aug; 28(4):586-91. PubMed ID: 4404222
    [No Abstract]   [Full Text] [Related]  

  • 24. Reducibility of cytochromes b in aerobic beef-heart mitochondria treated with antimycin.
    Lee IY; Slater EC
    Biochim Biophys Acta; 1972 Dec; 283(3):395-402. PubMed ID: 4346388
    [No Abstract]   [Full Text] [Related]  

  • 25. Defect in oxidative phosphorylation in LV papillary muscle mitochondria of patients undergoing mitral valve replacement.
    Santosh S; Pawan K; Karpagam P; Kaushala M; Neela P
    Mitochondrion; 2006 Apr; 6(2):89-93. PubMed ID: 16554188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of respiratory gases on cytochrome A in intact cerebral cortex: is there a critical Po2?
    Rosenthal M; Lamanna JC; Jöbsis FF; Levasseur JE; Kontos HA; Patterson JL
    Brain Res; 1976 May; 108(1):143-54. PubMed ID: 179662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidation-reduction potentials of cytochromes in mitochondria.
    Dutton PL; Wilson DF; Lee CP
    Biochemistry; 1970 Dec; 9(26):5077-82. PubMed ID: 4320585
    [No Abstract]   [Full Text] [Related]  

  • 28. In situ studies of oxidative energy metabolism during transient cortical ischemia in cats.
    Rosenthal M; Martel D; LaManna JC; Jöbsis FF
    Exp Neurol; 1976 Feb; 50(2):477-94. PubMed ID: 174928
    [No Abstract]   [Full Text] [Related]  

  • 29. Correlation of mitochondrial cytochrome concentration and activity to oxygen availability in the newborn.
    Mela L; Goodwin CW; Miller LD
    Biochem Biophys Res Commun; 1975 May; 64(1):384-90. PubMed ID: 167741
    [No Abstract]   [Full Text] [Related]  

  • 30. Cytochrome redox potential dependence on substrate in rat cerebral cortex slices: importance of cytoplasmic NAD(P)H and potassium.
    Bull RJ
    J Neurochem; 1976 Jan; 26(1):149-56. PubMed ID: 3625
    [No Abstract]   [Full Text] [Related]  

  • 31. The effect of dipyridamole on the metabolism of cardiac muscle.
    Yu DH; Gluckman MI
    J Pharmacol Exp Ther; 1969 Nov; 170(1):37-43. PubMed ID: 4390813
    [No Abstract]   [Full Text] [Related]  

  • 32. Substrate effects on myocardial performance during normoxia and hypoxia.
    Snow TR
    Am J Physiol; 1978 Aug; 235(2):H144-9. PubMed ID: 210679
    [No Abstract]   [Full Text] [Related]  

  • 33. Normal myocardial function and energetics after reversing pressure-overload hypertrophy.
    Cooper G; Satava RM; Harrison CE; Coleman HN
    Am J Physiol; 1974 May; 226(5):1158-65. PubMed ID: 4274811
    [No Abstract]   [Full Text] [Related]  

  • 34. Development and adaptation of heart mitochondrial respiratory chain function in fetus and in newborn.
    Goodwin CW; Mela L; Deutsch C; Forster RE; Miller LD; Kelivoria-Papadopoulos M
    Adv Exp Med Biol; 1976; 75():713-9. PubMed ID: 1035034
    [No Abstract]   [Full Text] [Related]  

  • 35. A fluorescence probe of energy-dependent structure changes in fragmented membranes.
    Azzi A; Chance B; Radda GK; Lee CP
    Proc Natl Acad Sci U S A; 1969 Feb; 62(2):612-9. PubMed ID: 4307717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The kinetics of flavoprotein and pyridine nucleotide oxidation in cardiac mitochondria in the presence of calcium.
    Chance B
    FEBS Lett; 1972 Oct; 26(1):315-9. PubMed ID: 4344294
    [No Abstract]   [Full Text] [Related]  

  • 37. Mechanism of norepinephrine-induced stimulation of myocardial oxygen consumption.
    Coleman HN; Sonnenblick EH; Braunwald E
    Am J Physiol; 1971 Sep; 221(3):778-83. PubMed ID: 5570334
    [No Abstract]   [Full Text] [Related]  

  • 38. Some peculiarities of metabolism of the myocardium under conditions of experimental disturbance of the microcirculation.
    Chernukh AM; Chernysheva GV
    Circ Res; 1974 Sep; 35 Suppl 3():150-5. PubMed ID: 4370382
    [No Abstract]   [Full Text] [Related]  

  • 39. One-electron-transfer reactions in biochemical systems. V. Difference in the mechanism of quinone reduction by the NADH dehydrogenase and the NAD(P)H dehydrogenase (DT-diaphorase).
    Iyanagi T; Yamazaki I
    Biochim Biophys Acta; 1970 Sep; 216(2):282-94. PubMed ID: 4396182
    [No Abstract]   [Full Text] [Related]  

  • 40. [Inhibition of succinate oxidation by oxaloacetate].
    Vinogradov AD
    Biokhimiia; 1967; 32(6):1271-7. PubMed ID: 4298763
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.