These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 18959188)

  • 21. Comparative study of hemocytes and associated cells of some medically important dipterans.
    Kaaya GP; Ratcliffe NA
    J Morphol; 1982 Sep; 173(3):351-65. PubMed ID: 6764649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hemocytes from the tobacco hornworm Manduca sexta have distinct functions in phagocytosis of foreign particles and self dead cells.
    Ling E; Yu XQ
    Dev Comp Immunol; 2006; 30(3):301-9. PubMed ID: 16054213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Induction of antimicrobial peptide synthesis by fat body cells in Calliphora vicina R.-D. (diptera, calliphoridae) larvae].
    Iakovlev AIu
    Zh Evol Biokhim Fiziol; 2011; 47(6):461-8. PubMed ID: 22288114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Defense reactions of Dermatobia hominis (Diptera: Cuterebridae) larval hemocytes.
    Faraldo AC; Lello E
    Biocell; 2003 Aug; 27(2):197-203. PubMed ID: 14510238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Neurogenic and septic inductions of synthesis of peptide antibiotics in larvae of Calliphora vicina R.-D. (Diptera: Calliphoridae)].
    Gordia NA; Nesin AP; Simonenko NP; Iakovlev AIu; Chernysh SI
    Zh Evol Biokhim Fiziol; 2011; 47(2):165-71. PubMed ID: 21604429
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fat body and hemocyte contribution to the antimicrobial peptide synthesis in Calliphora vicina R.-D. (Diptera: Calliphoridae) larvae.
    Yakovlev AY; Nesin AP; Simonenko NP; Gordya NA; Tulin DV; Kruglikova AA; Chernysh SI
    In Vitro Cell Dev Biol Anim; 2017 Jan; 53(1):33-42. PubMed ID: 27586266
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Venom of Euplectrus separatae causes hyperlipidemia by lysis of host fat body cells.
    Nakamatsu Y; Tanaka T
    J Insect Physiol; 2004 Apr; 50(4):267-75. PubMed ID: 15081819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Survival and differential development of Entomophaga maimaiga and Entomophaga aulicae (Zygomycetes: Entomophthorales) in Lymantria dispar hemolymph.
    Lopez Lastra CC; Gibson DM; Hajek AE
    J Invertebr Pathol; 2001 Nov; 78(4):201-9. PubMed ID: 12009800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellular immune response in Rhodnius prolixus: role of ecdysone in hemocyte phagocytosis.
    Figueiredo MB; Castro DP; S Nogueira NF; Garcia ES; Azambuja P
    J Insect Physiol; 2006 Jul; 52(7):711-6. PubMed ID: 16759667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Eicosanoids mediate the laminarin-induced nodulation response in larvae of the flesh fly, Neobellieria bullata.
    Franssens V; Simonet G; Bronckaers A; Claeys I; De Loof A; Vanden Broeck J
    Arch Insect Biochem Physiol; 2005 May; 59(1):32-41. PubMed ID: 15822095
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biogenesis, structure, and immune-suppressive effects of virus-like particles of a Drosophila parasitoid, Leptopilina victoriae.
    Morales J; Chiu H; Oo T; Plaza R; Hoskins S; Govind S
    J Insect Physiol; 2005 Feb; 51(2):181-95. PubMed ID: 15749103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anatomy of the stomatogastric nervous system associated with the foregut in Drosophila melanogaster and Calliphora vicina third instar larvae.
    Spiess R; Schoofs A; Heinzel HG
    J Morphol; 2008 Mar; 269(3):272-82. PubMed ID: 17960761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Eicosanoids mediate nodulation reactions to a mollicute bacterium in larvae of the blowfly, Chrysomya megacephala.
    Zhao F; Stanley D; Wang Y; Zhu F; Lei CL
    J Insect Physiol; 2009 Mar; 55(3):192-6. PubMed ID: 19071132
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of cell clusters in larval hemolymph of the cabbage armyworm Mamestra brassicae and their role in maintenance of hemocyte populations.
    Mangalika PR; Kawamoto T; Takahashi-Nakaguchi A; Iwabuchi K
    J Insect Physiol; 2010 Mar; 56(3):314-23. PubMed ID: 19913022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Drosophila haematopoiesis.
    Crozatier M; Meister M
    Cell Microbiol; 2007 May; 9(5):1117-26. PubMed ID: 17394559
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Observation on hemocytes of Culex pipiens quinquefasciatus larvae infected by Lagenidium giganteum].
    Mo F; Bao HE
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2001; 19(6):330-2. PubMed ID: 12572061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hemocyte differentiation in the hematopoietic organs of the silkworm, Bombyx mori: prohemocytes have the function of phagocytosis.
    Ling E; Shirai K; Kanekatsu R; Kiguchi K
    Cell Tissue Res; 2005 Jun; 320(3):535-43. PubMed ID: 15846518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and functional characterization of pseudopodocyte, a shaggy immune cell produced by two Drosophila species of the obscura group.
    Havard S; Doury G; Ravallec M; Brehélin M; Prévost G; Eslin P
    Dev Comp Immunol; 2012 Feb; 36(2):323-31. PubMed ID: 21663756
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The immune response of larvae and pupae of Calliphora vicina (Diptera: Calliphoridae), upon administered insult with Escherichia coli.
    Crowley LD; Houck MA
    J Med Entomol; 2002 Nov; 39(6):931-4. PubMed ID: 12495195
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phagocytic activity and encapsulation rate of Galleria mellonella larval haemocytes during bacterial infection by Bacillus thuringiensis.
    Dubovskiy IM; Krukova NA; Glupov VV
    J Invertebr Pathol; 2008 Jul; 98(3):360-2. PubMed ID: 18440019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.