These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
358 related articles for article (PubMed ID: 18959310)
1. Bald eagles and sea otters in the Aleutian Archipelago: indirect effects of trophic cascades. Anthony RG; Estes JA; Ricca MA; Miles AK; Forsman ED Ecology; 2008 Oct; 89(10):2725-35. PubMed ID: 18959310 [TBL] [Abstract][Full Text] [Related]
2. Indirect food web interactions: sea otters and kelp forest fishes in the Aleutian archipelago. Reisewitz SE; Estes JA; Simenstad CA Oecologia; 2006 Jan; 146(4):623-31. PubMed ID: 16193296 [TBL] [Abstract][Full Text] [Related]
3. Comparison of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in feathers in bald eagle (Haliaeetus leucocephalus), and comparison with common eider (Somateria mollissima), glaucous-winged gull (Larus glaucescens), pigeon guillemot (Cepphus columba), and tufted puffin (Fratercula cirrhata) from the Aleutian Chain of Alaska. Burger J; Gochfeld M Environ Monit Assess; 2009 May; 152(1-4):357-67. PubMed ID: 18521716 [TBL] [Abstract][Full Text] [Related]
4. Testing the nutritional-limitation, predator-avoidance, and storm-avoidance hypotheses for restricted sea otter habitat use in the Aleutian Islands, Alaska. Stewart NL; Konar B; Tinker MT Oecologia; 2015 Mar; 177(3):645-655. PubMed ID: 25416538 [TBL] [Abstract][Full Text] [Related]
5. Herring gulls and great black-backed gulls as indicators of contaminants in bald eagles in Lake Ontario, Canada. Weseloh DV; Hughes KD; Ewins PJ; Best D; Kubiak T; Shieldcastle MC Environ Toxicol Chem; 2002 May; 21(5):1015-25. PubMed ID: 12013123 [TBL] [Abstract][Full Text] [Related]
6. Predator-prey dynamics of bald eagles and glaucous-winged gulls at Protection Island, Washington, USA. Henson SM; Desharnais RA; Funasaki ET; Galusha JG; Watson JW; Hayward JL Ecol Evol; 2019 Apr; 9(7):3850-3867. PubMed ID: 31015971 [TBL] [Abstract][Full Text] [Related]
7. From the predictable to the unexpected: kelp forest and benthic invertebrate community dynamics following decades of sea otter expansion. Shelton AO; Harvey CJ; Samhouri JF; Andrews KS; Feist BE; Frick KE; Tolimieri N; Williams GD; Antrim LD; Berry HD Oecologia; 2018 Dec; 188(4):1105-1119. PubMed ID: 30311056 [TBL] [Abstract][Full Text] [Related]
8. Revealing the extent of sea otter impacts on bivalve prey through multi-trophic monitoring and mechanistic models. Leach CB; Weitzman BP; Bodkin JL; Esler D; Esslinger GG; Kloecker KA; Monson DH; Womble JN; Hooten MB J Anim Ecol; 2023 Jun; 92(6):1230-1243. PubMed ID: 37081640 [TBL] [Abstract][Full Text] [Related]
9. Behavioral responses across a mosaic of ecosystem states restructure a sea otter-urchin trophic cascade. Smith JG; Tomoleoni J; Staedler M; Lyon S; Fujii J; Tinker MT Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33836567 [TBL] [Abstract][Full Text] [Related]
10. Recovery of a marine keystone predator transforms terrestrial predator-prey dynamics. Roffler GH; Eriksson CE; Allen JM; Levi T Proc Natl Acad Sci U S A; 2023 Jan; 120(5):e2209037120. PubMed ID: 36689656 [TBL] [Abstract][Full Text] [Related]
11. Indirect effects of sea otters on rockfish (Sebastes spp.) in giant kelp forests. Markel RW; Shurin JB Ecology; 2015 Nov; 96(11):2877-90. PubMed ID: 27070008 [TBL] [Abstract][Full Text] [Related]
12. Pleistocene to historic shifts in bald eagle diets on the Channel Islands, California. Newsome SD; Collins PW; Rick TC; Guthrie DA; Erlandson JM; Fogel ML Proc Natl Acad Sci U S A; 2010 May; 107(20):9246-51. PubMed ID: 20439737 [TBL] [Abstract][Full Text] [Related]
13. Environmental contaminants in bald eagle eggs from the Aleutian archipelago. Anthony RG; Miles AK; Ricca MA; Estes JA Environ Toxicol Chem; 2007 Sep; 26(9):1843-55. PubMed ID: 17702538 [TBL] [Abstract][Full Text] [Related]
14. Macronutrient composition of sea otter diet with respect to recolonization, life history, and season in southern Southeast Alaska. LaRoche NL; King SL; Fergusson EA; Eckert GL; Pearson HC Ecol Evol; 2023 May; 13(5):e10042. PubMed ID: 37153015 [TBL] [Abstract][Full Text] [Related]
15. Using stable isotopes to investigate individual diet specialization in California sea otters (Enhydra lutris nereis). Newsome SD; Tinker MT; Monson DH; Oftedal OT; Ralls K; Staedler MM; Fogel ML; Estes JA Ecology; 2009 Apr; 90(4):961-74. PubMed ID: 19449691 [TBL] [Abstract][Full Text] [Related]
16. Patterns of growth and body condition in sea otters from the Aleutian archipelago before and after the recent population decline. Laidre KL; Estes JA; Tinker MT; Bodkin J; Monson D; Schneider K J Anim Ecol; 2006 Jul; 75(4):978-89. PubMed ID: 17009761 [TBL] [Abstract][Full Text] [Related]
17. Predator functional response and prey survival: direct and indirect interactions affecting a marked prey population. Miller DA; Grand JB; Fondell TF; Anthony M J Anim Ecol; 2006 Jan; 75(1):101-10. PubMed ID: 16903047 [TBL] [Abstract][Full Text] [Related]
18. Clinical pathology and assessment of pathogen exposure in southern and Alaskan sea otters. Hanni KD; Mazet JA; Gulland FM; Estes J; Staedler M; Murray MJ; Miller M; Jessup DA J Wildl Dis; 2003 Oct; 39(4):837-50. PubMed ID: 14733279 [TBL] [Abstract][Full Text] [Related]
19. The interaction of intraspecific competition and habitat on individual diet specialization: a near range-wide examination of sea otters. Newsome SD; Tinker MT; Gill VA; Hoyt ZN; Doroff A; Nichol L; Bodkin JL Oecologia; 2015 May; 178(1):45-59. PubMed ID: 25645269 [TBL] [Abstract][Full Text] [Related]
20. Causes and consequences of marine mammal population declines in southwest Alaska: a food-web perspective. Estes JA; Doak DF; Springer AM; Williams TM Philos Trans R Soc Lond B Biol Sci; 2009 Jun; 364(1524):1647-58. PubMed ID: 19451116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]