These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 18959599)

  • 21. Gut hormone polyagonists for the treatment of type 2 diabetes.
    Brandt SJ; Götz A; Tschöp MH; Müller TD
    Peptides; 2018 Feb; 100():190-201. PubMed ID: 29412819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of incretin on diabetes mellitus.
    Sanusi H
    Acta Med Indones; 2009 Oct; 41(4):205-12. PubMed ID: 20737753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Restoration of the insulinotropic effect of glucose-dependent insulinotropic polypeptide contributes to the antidiabetic effect of dipeptidyl peptidase-4 inhibitors.
    Aaboe K; Akram S; Deacon CF; Holst JJ; Madsbad S; Krarup T
    Diabetes Obes Metab; 2015 Jan; 17(1):74-81. PubMed ID: 25243647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The dual glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist tirzepatide: a novel cardiometabolic therapeutic prospect.
    Fisman EZ; Tenenbaum A
    Cardiovasc Diabetol; 2021 Nov; 20(1):225. PubMed ID: 34819089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impaired incretin-induced amplification of insulin secretion after glucose homeostatic dysregulation in healthy subjects.
    Hansen KB; Vilsbøll T; Bagger JI; Holst JJ; Knop FK
    J Clin Endocrinol Metab; 2012 Apr; 97(4):1363-70. PubMed ID: 22319034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physiological mechanisms of action of incretin and insulin in regulating skeletal muscle metabolism.
    Abdulla H; Phillips B; Smith K; Wilkinson D; Atherton PJ; Idris I
    Curr Diabetes Rev; 2014; 10(5):327-35. PubMed ID: 25323297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GIP does not potentiate the antidiabetic effects of GLP-1 in hyperglycemic patients with type 2 diabetes.
    Mentis N; Vardarli I; Köthe LD; Holst JJ; Deacon CF; Theodorakis M; Meier JJ; Nauck MA
    Diabetes; 2011 Apr; 60(4):1270-6. PubMed ID: 21330636
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fate of the beta-cell in the pathophysiology of type 2 diabetes.
    Campbell RK
    J Am Pharm Assoc (2003); 2009; 49 Suppl 1():S10-5. PubMed ID: 19801360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Incretin effect: GLP-1, GIP, DPP4.
    Kazafeos K
    Diabetes Res Clin Pract; 2011 Aug; 93 Suppl 1():S32-6. PubMed ID: 21864749
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Incretins and the development of type 2 diabetes.
    Meier JJ; Nauck MA
    Curr Diab Rep; 2006 Jun; 6(3):194-201. PubMed ID: 16898571
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physiology of incretins and loss of incretin effect in type 2 diabetes and obesity.
    Opinto G; Natalicchio A; Marchetti P
    Arch Physiol Biochem; 2013 Oct; 119(4):170-8. PubMed ID: 23859800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Incretins yesterday, pleiotropic gastrointestinal hormones today:glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP).
    Kiec-Klimczak ME; Pach DM; Pogwizd ME; Hubalewska-Dydejczyk AB
    Recent Pat Endocr Metab Immune Drug Discov; 2011 Sep; 5(3):176-82. PubMed ID: 21913887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GIP: no longer the neglected incretin twin?
    Kulkarni RN
    Sci Transl Med; 2010 Sep; 2(49):49ps47. PubMed ID: 20844284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The physiology of glucagon-like peptide-1 and its role in the pathophysiology of type 2 diabetes mellitus].
    Escalada FJ
    Med Clin (Barc); 2014; 143 Suppl 2():2-7. PubMed ID: 25326836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of independent and combined metabolic effects of chronic treatment with (pGlu-Gln)-CCK-8 and long-acting GLP-1 and GIP mimetics in high fat-fed mice.
    Irwin N; Hunter K; Montgomery IA; Flatt PR
    Diabetes Obes Metab; 2013 Jul; 15(7):650-9. PubMed ID: 23388064
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The pathophysiologic role of incretins.
    Freeman JS
    J Am Osteopath Assoc; 2007 May; 107 Suppl():S6-9. PubMed ID: 17724014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Incretins: their physiology and application in the treatment of diabetes mellitus.
    Tasyurek HM; Altunbas HA; Balci MK; Sanlioglu S
    Diabetes Metab Res Rev; 2014 Jul; 30(5):354-71. PubMed ID: 24989141
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucose-dependent insulinotropic polypeptide: effects on insulin and glucagon secretion in humans.
    Christensen MB
    Dan Med J; 2016 Apr; 63(4):. PubMed ID: 27034187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Incretin concept revised: The origin of the insulinotropic function of glucagon-like peptide-1 - the gut, the islets or both?
    Yabe D; Seino Y; Seino Y
    J Diabetes Investig; 2018 Jan; 9(1):21-24. PubMed ID: 28746743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of variations in duodenal glucose load on glycaemic, insulin, and incretin responses in type 2 diabetes.
    Ma J; Pilichiewicz AN; Feinle-Bisset C; Wishart JM; Jones KL; Horowitz M; Rayner CK
    Diabet Med; 2012 May; 29(5):604-8. PubMed ID: 22004512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.