BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 18959761)

  • 1. Hexameric ring structure of a thermophilic archaeon NADH oxidase that produces predominantly H2O.
    Jia B; Park SC; Lee S; Pham BP; Yu R; Le TL; Han SW; Yang JK; Choi MS; Baumeister W; Cheong GW
    FEBS J; 2008 Nov; 275(21):5355-66. PubMed ID: 18959761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An archaeal NADH oxidase causes damage to both proteins and nucleic acids under oxidative stress.
    Jia B; Lee S; Pham BP; Cho YS; Yang JK; Byeon HS; Kim JC; Cheong GW
    Mol Cells; 2010 Apr; 29(4):363-71. PubMed ID: 20213313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of a water-forming NADH oxidase from Methanobrevibacter smithii, an archaeon in the human gut.
    Yan M; Yin W; Fang X; Guo J; Shi H
    Biosci Rep; 2016 Dec; 36(6):. PubMed ID: 27737924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidized NADH oxidase inhibits activity of an ATP/NAD kinase from a Thermophilic archaeon.
    Jia B; Lee S; Pham BP; Liu J; Pan H; Zhang S; Cheong GW
    Protein J; 2010 Nov; 29(8):609-16. PubMed ID: 21082227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel NADPH-dependent oxidoreductase with a unique domain structure in the hyperthermophilic Archaeon, Thermococcus litoralis.
    Tóth A; Takács M; Groma G; Rákhely G; Kovács KL
    FEMS Microbiol Lett; 2008 May; 282(1):8-14. PubMed ID: 18355283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of an H2O-forming NADH oxidase from Clostridium aminovalericum: existence of an oxygen-detoxifying enzyme in an obligate anaerobic bacteria.
    Kawasaki S; Ishikura J; Chiba D; Nishino T; Niimura Y
    Arch Microbiol; 2004 Apr; 181(4):324-30. PubMed ID: 15014929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The crystal structure of NAD(P)H oxidase from Lactobacillus sanfranciscensis: insights into the conversion of O2 into two water molecules by the flavoenzyme.
    Lountos GT; Jiang R; Wellborn WB; Thaler TL; Bommarius AS; Orville AM
    Biochemistry; 2006 Aug; 45(32):9648-59. PubMed ID: 16893166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of an NADH oxidase from extremely thermophilic anaerobic bacterium Thermotoga hypogea.
    Yang X; Ma K
    Arch Microbiol; 2005 Aug; 183(5):331-7. PubMed ID: 15912375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen reactivity of an NADH oxidase C42S mutant: evidence for a C(4a)-peroxyflavin intermediate and a rate-limiting conformational change.
    Mallett TC; Claiborne A
    Biochemistry; 1998 Jun; 37(24):8790-802. PubMed ID: 9628741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of NADH oxidase/NADPH polysulfide oxidoreductase and its unexpected participation in oxygen sensitivity in an anaerobic hyperthermophilic archaeon.
    Kobori H; Ogino M; Orita I; Nakamura S; Imanaka T; Fukui T
    J Bacteriol; 2010 Oct; 192(19):5192-202. PubMed ID: 20675490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery and characterization of a Coenzyme A disulfide reductase from Pyrococcus horikoshii. Implications for this disulfide metabolism of anaerobic hyperthermophiles.
    Harris DR; Ward DE; Feasel JM; Lancaster KM; Murphy RD; Mallet TC; Crane EJ
    FEBS J; 2005 Mar; 272(5):1189-200. PubMed ID: 15720393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. H(2)O(2)-forming NADH oxidase with diaphorase (cytochrome) activity from Archaeoglobus fulgidus.
    Reed DW; Millstein J; Hartzell PL
    J Bacteriol; 2001 Dec; 183(24):7007-16. PubMed ID: 11717257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular cloning and sequence analysis of the gene encoding the H2O-forming NADH oxidase from Streptococcus mutans.
    Matsumoto J; Higuchi M; Shimada M; Yamamoto Y; Kamio Y
    Biosci Biotechnol Biochem; 1996 Jan; 60(1):39-43. PubMed ID: 8824824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of alkyl hydroperoxide reductase and two water-forming NADH oxidases from Bacillus cereus ATCC 14579.
    Wang L; Chong H; Jiang R
    Appl Microbiol Biotechnol; 2012 Dec; 96(5):1265-73. PubMed ID: 22311647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallization and preliminary analysis of a water-forming NADH oxidase from Lactobacillus sanfranciscensis.
    Lountos GT; Riebel BR; Wellborn WB; Bommarius AS; Orville AM
    Acta Crystallogr D Biol Crystallogr; 2004 Nov; 60(Pt 11):2044-7. PubMed ID: 15502322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterization of H2O2-forming NADH oxidases from Archaeoglobus fulgidus.
    Kengen SW; van der Oost J; de Vos WM
    Eur J Biochem; 2003 Jul; 270(13):2885-94. PubMed ID: 12823559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A H2O-producing NADH oxidase from the protozoan parasite Giardia duodenalis.
    Brown DM; Upcroft JA; Upcroft P
    Eur J Biochem; 1996 Oct; 241(1):155-61. PubMed ID: 8898901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of an NADH oxidase from Eubacterium ramulus.
    Herles C; Braune A; Blaut M
    Arch Microbiol; 2002 Jul; 178(1):71-4. PubMed ID: 12070772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational plasticity surrounding the active site of NADH oxidase from Thermus thermophilus.
    Miletti T; Di Trani J; Levros LC; Mittermaier A
    Protein Sci; 2015 Jul; 24(7):1114-28. PubMed ID: 25970557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 35 kDa NAD(P)H oxidase previously isolated from the archaeon Sulfolobus solfataricus is instead a thioredoxin reductase.
    Ruocco MR; Ruggiero A; Masullo L; Arcari P; Masullo M
    Biochimie; 2004 Dec; 86(12):883-92. PubMed ID: 15667938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.