These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 1896011)

  • 1. A phosphoglucose isomerase gene is involved in the Rag phenotype of the yeast Kluyveromyces lactis.
    Goffrini P; Wésolowski-Louvel M; Ferrero I
    Mol Gen Genet; 1991 Sep; 228(3):401-9. PubMed ID: 1896011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the first fungal NADP-GAPDH from Kluyveromyces lactis.
    Verho R; Richard P; Jonson PH; Sundqvist L; Londesborough J; Penttilä M
    Biochemistry; 2002 Nov; 41(46):13833-8. PubMed ID: 12427047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The RAG2 gene of the yeast Kluyveromyces lactis codes for a putative phosphoglucose isomerase.
    Wésolowski-Louvel M; Goffrini P; Ferrero I
    Nucleic Acids Res; 1988 Sep; 16(17):8714. PubMed ID: 3419932
    [No Abstract]   [Full Text] [Related]  

  • 4. Genome-wide analysis of Kluyveromyces lactis in wild-type and rag2 mutant strains.
    Becerra M; Tarrío N; González-Siso MI; Cerdán ME
    Genome; 2004 Oct; 47(5):970-8. PubMed ID: 15499411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 'petite-negative' yeast Kluyveromyces lactis has a single gene expressing pyruvate decarboxylase activity.
    Bianchi MM; Tizzani L; Destruelle M; Frontali L; Wésolowski-Louvel M
    Mol Microbiol; 1996 Jan; 19(1):27-36. PubMed ID: 8821934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria.
    Overkamp KM; Bakker BM; Steensma HY; van Dijken JP; Pronk JT
    Yeast; 2002 Jul; 19(10):813-24. PubMed ID: 12112236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reoxidation of the NADPH produced by the pentose phosphate pathway is necessary for the utilization of glucose by Kluyveromyces lactis rag2 mutants.
    González Siso MI; Freire Picos MA; Cerdán ME
    FEBS Lett; 1996 May; 387(1):7-10. PubMed ID: 8654569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular genetics of phosphofructokinase in the yeast Kluyveromyces lactis.
    Heinisch J; Kirchrath L; Liesen T; Vogelsang K; Hollenberg CP
    Mol Microbiol; 1993 May; 8(3):559-70. PubMed ID: 8326866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and analysis of the Kluyveromyces lactis TRP1 gene: a chromosomal locus flanked by genes encoding inorganic pyrophosphatase and histone H3.
    Stark MJ; Milner JS
    Yeast; 1989; 5(1):35-50. PubMed ID: 2538971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure and regulation of phosphoglucose isomerase in Saccharomyces cerevisiae.
    Green JB; Wright AP; Cheung WY; Lancashire WE; Hartley BS
    Mol Gen Genet; 1988 Dec; 215(1):100-6. PubMed ID: 3071735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The isolation, characterization and nucleotide sequence of the phosphoglucoisomerase gene of Saccharomyces cerevisiae.
    Tekamp-Olson P; Najarian R; Burke RL
    Gene; 1988 Dec; 73(1):153-61. PubMed ID: 3072254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of the alcohol dehydrogenase (ADH) genes in yeast: characterization of a fourth ADH in Kluyveromyces lactis.
    Shain DH; Salvadore C; Denis CL
    Mol Gen Genet; 1992 Apr; 232(3):479-88. PubMed ID: 1588917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The alcohol dehydrogenase system in the yeast, Kluyveromyces lactis.
    Saliola M; Shuster JR; Falcone C
    Yeast; 1990; 6(3):193-204. PubMed ID: 2190430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nuclear gene required for the expression of the linear DNA-associated killer system in the yeast Kluyveromyces lactis.
    Wesolowski-Louvel M; Tanguy-Rougeau C; Fukuhara H
    Yeast; 1988 Mar; 4(1):71-81. PubMed ID: 3059713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RAG3 gene and transcriptional regulation of the pyruvate decarboxylase gene in Kluyveromyces lactis.
    Prior C; Tizzani L; Fukuhara H; Wésolowski-Louvel M
    Mol Microbiol; 1996 May; 20(4):765-72. PubMed ID: 8793873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant.
    Boles E; Lehnert W; Zimmermann FK
    Eur J Biochem; 1993 Oct; 217(1):469-77. PubMed ID: 7901008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of the Kluyveromyces lactis GGS1 gene causes inability to grow on glucose and fructose and is suppressed by mutations that reduce sugar uptake.
    Luyten K; de Koning W; Tesseur I; Ruiz MC; Ramos J; Cobbaert P; Thevelein JM; Hohmann S
    Eur J Biochem; 1993 Oct; 217(2):701-13. PubMed ID: 8223613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion of the phosphoglucose isomerase structural gene makes growth and sporulation glucose dependent in Saccharomyces cerevisiae.
    Aguilera A
    Mol Gen Genet; 1986 Aug; 204(2):310-6. PubMed ID: 3020369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning, characterization, and nucleotide sequence analysis of a Zymomonas mobilis phosphoglucose isomerase gene that is subject to carbon source-dependent regulation.
    Hesman TL; Barnell WO; Conway T
    J Bacteriol; 1991 May; 173(10):3215-23. PubMed ID: 1708765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isocitrate lyase of the yeast Kluyveromyces lactis is subject to glucose repression but not to catabolite inactivation.
    López ML; Redruello B; Valdés E; Moreno F; Heinisch JJ; Rodicio R
    Curr Genet; 2004 Jan; 44(6):305-16. PubMed ID: 14569415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.