These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 18961666)

  • 41. Elimination of interferences in electrothermal-atomization atomic-absorption spectrometry of cadmium.
    Ohta K; Aoki W; Mizuno T
    Talanta; 1988 Nov; 35(11):831-6. PubMed ID: 18964628
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrothermal atomic-absorption and atomic-fluorescence spectrometry with a tungsten-coil atomizer.
    Muzgin VN; Atnashev YB; Korepanov VE; Pupyshev AA
    Talanta; 1987 Jan; 34(1):197-200. PubMed ID: 18964279
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Investigations for the determination of tin by flow injection hydride generation atomic-absorption spectrometry.
    Welz B; Schubert-Jacobs M; Guot T
    Talanta; 1992 Sep; 39(9):1097-105. PubMed ID: 18965500
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Slurry sampling graphite furnace atomic absorption spectrometry: determination of trace metals in mineral coal.
    Silva MM; Goreti M; Vale R; Caramão EB
    Talanta; 1999 Dec; 50(5):1035-43. PubMed ID: 18967798
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetics of indium atomization from different atomizer surfaces in electrothermal atomic absorption spectrometry (ETAAS).
    Yan XP; Ni ZM; Yang XT; Hong GQ
    Talanta; 1993 Dec; 40(12):1839-46. PubMed ID: 18965860
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct determination of boron in a cobalt-based alloy by graphite furnace-atomic absorption spectrometry.
    Gong B; Liu Y; Xu Y; Li Z; Lin T
    Talanta; 1995 Oct; 42(10):1419-23. PubMed ID: 18966371
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enrichment of iron(III), cobalt(II), nickel(II), and copper(II) by solid-phase extraction with 1,8-dihydroxyanthraquinone anchored to silica gel before their determination by flame atomic absorption spectrometry.
    Goswami A; Singh AK
    Anal Bioanal Chem; 2002 Oct; 374(3):554-60. PubMed ID: 12373409
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Determination of nanogram amounts of nickel by flameless atomic-absorption spectroscopy.
    Dipierro S; Tessari G
    Talanta; 1971 Jul; 18(7):707-16. PubMed ID: 18960934
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry.
    Bentlin FR; Pozebon D; Mello PA; Flores EM
    Anal Chim Acta; 2007 Oct; 602(1):23-31. PubMed ID: 17936103
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Direct atomic absorption spectrometry determination of tin, lead, cadmium and zinc in high-purity graphite with flame furnace atomizer.
    Zacharia A; Gucer S; Izgi B; Chebotarev A; Karaaslan H
    Talanta; 2007 Apr; 72(2):825-30. PubMed ID: 19071693
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polarized Zeeman-effect flameless atomic absorption spectrometry of cadmium, copper, lead, and manganese in human kidney cortex.
    Pleban PA; Kerkay J; Pearson KH
    Clin Chem; 1981 Jan; 27(1):68-72. PubMed ID: 7449124
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultramicro analysis for copper, cadmium, and zinc in human liver tissue by use of atomic absorption spectrophotometry and the heated graphite tube atomizer.
    Evenson MA; Anderson CT
    Clin Chem; 1975 Apr; 21(4):537-43. PubMed ID: 234817
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis for platinum in biological material by flameless atomic absorption spectrometry.
    Pera MF; Harder HC
    Clin Chem; 1977 Jul; 23(7):1245-9. PubMed ID: 872370
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Flameless atomic absorption spectrophotometry of selenium in fish and food products.
    Shum GT; Freeman HC; Uthe JF
    J Assoc Off Anal Chem; 1977 Sep; 60(5):1010-4. PubMed ID: 893319
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct sample introduction of wines in graphite furnace atomic absorption spectrometry for the simultaneous determination of arsenic, cadmium, copper and lead content.
    Ajtony Z; Szoboszlai N; Suskó EK; Mezei P; György K; Bencs L
    Talanta; 2008 Jul; 76(3):627-34. PubMed ID: 18585331
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydride generation in-atomizer collection atomic absorption spectrometry for the determination of antimony in acetic acid leachates from pewter cups.
    Dessuy MB; Kratzer J; Vale MG; Welz B; Dědina J
    Talanta; 2011 Dec; 87():255-61. PubMed ID: 22099676
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Blood-collection device for trace and ultra-trace metal specimens evaluated.
    Moyer TP; Mussmann GV; Nixon DE
    Clin Chem; 1991 May; 37(5):709-14. PubMed ID: 2032325
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Atomization of hydride with a low-temperature, atmospheric pressure dielectric barrier discharge and its application to arsenic speciation with atomic absorption spectrometry.
    Zhu Z; Zhang S; Lv Y; Zhang X
    Anal Chem; 2006 Feb; 78(3):865-72. PubMed ID: 16448062
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selenium determination in biological fluids using Zeeman background correction electrothermal atomic absorption spectrometry.
    Campillo N; Viñas P; López-García I; Hernández-Córdoba M
    Anal Biochem; 2000 May; 280(2):195-200. PubMed ID: 10790300
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessment of trace element contents of chicken products from Turkey.
    Uluozlu OD; Tuzen M; Mendil D; Soylak M
    J Hazard Mater; 2009 Apr; 163(2-3):982-7. PubMed ID: 18752893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.