These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 18961719)

  • 1. Determination of lead in carbonate rocks by carbon-furnace atomic-absorption spectrometry after dissolution in nitric acid.
    Campbell WC; Ottaway JM
    Talanta; 1975 Sep; 22(9):729-32. PubMed ID: 18961719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selenium in foods: evaluation of atomic absorption spectrometric techniques involving hydrogen selenide generation and carbon furnace atomization.
    Ihnat M
    J Assoc Off Anal Chem; 1976 Jul; 59(4):911-22. PubMed ID: 939753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The determination of lead in 13 USGS standard rocks.
    Aruscavage PJ; Campbell EY
    Talanta; 1979 Nov; 26(11):1052-4. PubMed ID: 18962578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of traces of Ni in Li(2)CO(3)/Na(2)CO(3) melts by graphite furnace atomic absorption spectrometry.
    Scaccia S
    Talanta; 2005 Apr; 66(3):805-8. PubMed ID: 18970055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of gallium in geological materials by graphite-furnace atomic-absorption spectrometry.
    Takekawa F; Kuroda R
    Talanta; 1988 Sep; 35(9):737-9. PubMed ID: 18964607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential determination of platinum, ruthenium, and molybdenum in carbon-supported Pt, PtRu, and PtMo catalysts by atomic absorption spectrometry.
    Scaccia S; Goszczynska B
    Talanta; 2004 Jun; 63(3):791-6. PubMed ID: 18969501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of trace levels of calcium in steels by carbon-furnace atomic-absorption and atomic-emission spectrometry.
    Alvarado J; Campos F; Ottaway JM
    Talanta; 1986 Jan; 33(1):61-5. PubMed ID: 18964034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation and preconcentration of trace level of lead in one drop of blood sample by using graphite furnace atomic absorption spectrometry.
    Shrivas K; Patel DK
    J Hazard Mater; 2010 Apr; 176(1-3):414-7. PubMed ID: 20004520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of silver in environmental samples by tungsten wire preconcentration method-electrothermal atomic absorption spectrometry.
    Rahman MA; Kaneco S; Amin MN; Suzuki T; Ohta K
    Talanta; 2004 Apr; 62(5):1047-50. PubMed ID: 18969396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of traces of selenium in heat-resisting alloys by graphite-furnace atomic-absorption spectrometry after co-precipitation with arsenic.
    Kujirai O; Kobayashi T; Ide K; Sudo E
    Talanta; 1983 Jan; 30(1):9-14. PubMed ID: 18963309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Direct determination of Cu and Pb in edible L-lysine by graphite furnace atomic absorption spectrometry].
    Shan F; Bian JS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Jun; 22(3):480-2. PubMed ID: 12938341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of traces of tellurium in heat-resisting alloys by graphite-furnace atomic-absorption spectrometry after co-precipitation with arsenic.
    Kujirai O; Kobayashi T; Ide K; Sudo E
    Talanta; 1982 Jan; 29(1):27-30. PubMed ID: 18963071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct atomic absorption spectrometry determination of tin, lead, cadmium and zinc in high-purity graphite with flame furnace atomizer.
    Zacharia A; Gucer S; Izgi B; Chebotarev A; Karaaslan H
    Talanta; 2007 Apr; 72(2):825-30. PubMed ID: 19071693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study on determination of trace cadmium in Chinese medicine loulu by graphite furnace atomic absorption spectrometry].
    Ding J; Liao Z; Wang L; Yang X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Aug; 21(4):552-4. PubMed ID: 12945291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Graphite furnace atomic absorption spectrometry for determination of thallium in blood].
    Zhang QL; Gao G
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2016 Apr; 34(4):302-4. PubMed ID: 27514271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a macrocycle immobilized silica gel sorbent to flow injection on-line microcolumn preconcentration and separation coupled with flame atomic absorption spectrometry for interference-free determination of trace lead in biological and environmental samples.
    Yan XP; Sperling M; Welz B
    Anal Chem; 1999 Oct; 71(19):4216-22. PubMed ID: 10660437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of trace and ultra-trace amounts of noble metals in geological and related materials by graphite-furnace atomic-absorption spectrometry after separation by ion-exchange or co-precipitation with tellurium.
    Gupta JG
    Talanta; 1989 Jun; 36(6):651-6. PubMed ID: 18964774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Collaborative Study of a Diluted Acid Mild Extraction Method for Determination of Cadmium in Grain by Graphite Furnace Atomic Absorption Spectrometry.
    Zhou M; Wu Y; Zhang J; Zhang Y; Chen X; Ye J; Wang S
    Anal Sci; 2019 Mar; 35(3):283-287. PubMed ID: 30393237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation and preconcentration of ultratrace lead in biological organisms and its determination by graphite furnace atomic absorption spectrometry.
    Tang Y; Chen B; Mo S
    Talanta; 1996 May; 43(5):761-5. PubMed ID: 18966545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersive liquid-liquid microextraction preconcentration of palladium in water samples and determination by graphite furnace atomic absorption spectrometry.
    Liang P; Zhao E; Li F
    Talanta; 2009 Mar; 77(5):1854-7. PubMed ID: 19159809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.