These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 18961797)

  • 21. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks.
    Tangalos GE; Beard BL; Johnson CM; Alpers CN; Shelobolina ES; Xu H; Konishi H; Roden EE
    Geobiology; 2010 Jun; 8(3):197-208. PubMed ID: 20374296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A flow injection system with ion-exchange for spectrophotometric determination of copper in rocks.
    Pedrazzi EM; Santelli RE
    Talanta; 1993 Apr; 40(4):551-5. PubMed ID: 18965665
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of Co, Cu, Fe, Ga, W, and Zn in rocks by neutron activation and anion-exchange separation.
    Johansen O; Steinnes E
    Talanta; 1970 May; 17(5):407-14. PubMed ID: 18960752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of iron(III) by displacement substoichiometric extraction with labeled silver-dipyridyl.
    Bag M; Chattopadhyay P; Basu S
    Appl Radiat Isot; 2012 Jan; 70(1):69-71. PubMed ID: 21906957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of the sub- and super-equivalence and substoichiometric methods of isotope dilution analysis for the determination of a trace amount of antimony.
    Yoshioka H; Kambara T
    Talanta; 1984 Jul; 31(7):509-13. PubMed ID: 18963638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atomic-absorption determination of beryllium in geological materials by use of electrothermal atomization.
    Campbell EY; Simon FO
    Talanta; 1978 May; 25(5):251-5. PubMed ID: 18962253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Speciation of dissolved iron(II) and iron(III) in environmental water samples by gallic acid-modified nanometer-sized alumina micro-column separation and ICP-MS determination.
    Pu X; Hu B; Jiang Z; Huang C
    Analyst; 2005 Aug; 130(8):1175-81. PubMed ID: 16021217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The determination of lead in 13 USGS standard rocks.
    Aruscavage PJ; Campbell EY
    Talanta; 1979 Nov; 26(11):1052-4. PubMed ID: 18962578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated determination of traces of mercury in biological materials by substoichiometric radioisotope dilution.
    Růzicka J; Lamm CG
    Talanta; 1969 Feb; 16(2):157-68. PubMed ID: 18960485
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of the rare earths, yttrium and scandium in silicate rocks and four new geological reference materials by electrothermal atomization from graphite and tantalum surfaces.
    Sen Gupta JG
    Talanta; 1985 Jan; 32(1):1-6. PubMed ID: 18963773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective and quantitative separation of zinc and lead from other elements by cation-exchange chromatography in hydrohalic acid-acetone solutions.
    Victor AH; Strelow FW
    Talanta; 1981 Apr; 28(4):207-14. PubMed ID: 18962901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of ferric iron chelators by high-performance liquid chromatography using luminol chemiluminescence detection.
    Ariga T; Imura Y; Suzuki M; Yoshimura E
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Mar; 1014():75-82. PubMed ID: 26874881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromatographic separation and multicollection-ICPMS analysis of iron. Investigating mass-dependent and -independent isotope effects.
    Dauphas N; Janney PE; Mendybaev RA; Wadhwa M; Richter FM; Davis AM; van Zuilen M; Hines R; Foley CN
    Anal Chem; 2004 Oct; 76(19):5855-63. PubMed ID: 15456307
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of rare-earth elements and yttrium in silicate rocks by sequential inductively-coupled plasma emission spectrometry.
    Roychowdhury P; Roy NK; Das DK; Das AK
    Talanta; 1989 Dec; 36(12):1183-6. PubMed ID: 18964890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater.
    Percak-Dennett EM; Beard BL; Xu H; Konishi H; Johnson CM; Roden EE
    Geobiology; 2011 May; 9(3):205-20. PubMed ID: 21504536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substoichiometric determination of zinc by the isotope-dilution method using a chelating agent-loaded resin.
    Akaiwa H; Kawamoto H; Ogura K
    Talanta; 1977 Jun; 24(6):394-5. PubMed ID: 18962108
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of lead in carbonate rocks by carbon-furnace atomic-absorption spectrometry after dissolution in nitric acid.
    Campbell WC; Ottaway JM
    Talanta; 1975 Sep; 22(9):729-32. PubMed ID: 18961719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A fast method for apatite selective leaching from granitic rocks followed through rare earth elements and phosphorus determination by inductively coupled plasma optical emission spectrometry.
    Gásquez JA; DeLima E; Olsina RA; Martinez LD; de la Guardia M
    Talanta; 2005 Oct; 67(4):824-8. PubMed ID: 18970245
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-accuracy determination of iron in seawater by isotope dilution multiple collector inductively coupled plasma mass spectrometry (ID-MC-ICP-MS) using nitrilotriacetic acid chelating resin for pre-concentration and matrix separation.
    de Jong J; Schoemann V; Lannuzel D; Tison JL; Mattielli N
    Anal Chim Acta; 2008 Aug; 623(2):126-39. PubMed ID: 18620916
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative analysis of major and trace elements in NH
    Zhang W; Hu Z; Liu Y; Yang W; Chen H; Hu S; Xiao H
    Anal Chim Acta; 2017 Aug; 983():149-159. PubMed ID: 28811021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.