BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 1896219)

  • 1. The value of magnetic resonance imaging (MRI) in the follow-up management of spinal injury.
    Sett P; Crockard HA
    Paraplegia; 1991 Jul; 29(6):396-410. PubMed ID: 1896219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mean term follow-up of a series of post-traumatic syringomyelia patients after syringo-peritoneal shunting.
    Wiart L; Dautheribes M; Pointillart V; Gaujard E; Petit H; Barat M
    Paraplegia; 1995 May; 33(5):241-5. PubMed ID: 7630647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implications of focal spinal cord lesions following trauma: evaluation with magnetic resonance imaging.
    Silberstein M; Hennessy O
    Paraplegia; 1993 Mar; 31(3):160-7. PubMed ID: 8479781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suggested MRI criteria for surgical decompression in acute spinal cord injury. Preliminary observations.
    Silberstein M; Brown D; Tress BM; Hennessey O
    Paraplegia; 1992 Oct; 30(10):704-10. PubMed ID: 1448298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cystic cord lesions and neurological deterioration in spinal cord injury: operative considerations based on magnetic resonance imaging.
    Silberstein M; Hennessy O
    Paraplegia; 1992 Sep; 30(9):661-8. PubMed ID: 1408344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic spinal cord injury in the pediatric population: does magnetic resonance imaging correlate with the International Standards for Neurological Classification of Spinal Cord Injury examination?
    Samdani AF; Fayssoux RS; Asghar J; McCarthy JJ; Betz RR; Gaughan J; Mulcahey MJ
    Spine (Phila Pa 1976); 2009 Jan; 34(1):74-81. PubMed ID: 19127164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stab injuries to the spinal cord: a retrospective study on clinical findings and magnetic resonance imaging changes.
    Jacobsohn M; Semple P; Dunn R; Candy S
    Neurosurgery; 2007 Dec; 61(6):1262-6; discussion 1266-7. PubMed ID: 18162906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-contiguous spinal injury: clinical and imaging features, and postulated mechanism.
    Silberstein M; McLean K
    Paraplegia; 1994 Dec; 32(12):817-23. PubMed ID: 7708422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI in the acute phase of spinal cord traumatic lesions: Relationship between MRI findings and neurological outcome.
    Andreoli C; Colaiacomo MC; Rojas Beccaglia M; Di Biasi C; Casciani E; Gualdi G
    Radiol Med; 2005; 110(5-6):636-45. PubMed ID: 16437049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical evaluation of traumatic central cord syndrome: emphasis on clinical significance of prevertebral hyperintensity, cord compression, and intramedullary high-signal intensity on magnetic resonance imaging.
    Song J; Mizuno J; Inoue T; Nakagawa H
    Surg Neurol; 2006 Feb; 65(2):117-23. PubMed ID: 16427399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laminectomy and posterior cervical plating for multilevel cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament: effects on cervical alignment, spinal cord compression, and neurological outcome.
    Houten JK; Cooper PR
    Neurosurgery; 2003 May; 52(5):1081-7; discussion 1087-8. PubMed ID: 12699550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-traumatic spinal cord cysts evaluated by magnetic resonance imaging.
    Backe HA; Betz RR; Mesgarzadeh M; Beck T; Clancy M
    Paraplegia; 1991 Nov; 29(9):607-12. PubMed ID: 1787985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of magnetic resonance imaging in evaluating injuries to the pediatric thoracolumbar spine.
    Sledge JB; Allred D; Hyman J
    J Pediatr Orthop; 2001; 21(3):288-93. PubMed ID: 11371807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative and reproducible method to assess cord compression and canal stenosis after cervical spine trauma: a study of interrater and intrarater reliability.
    Furlan JC; Fehlings MG; Massicotte EM; Aarabi B; Vaccaro AR; Bono CM; Madrazo I; Villanueva C; Grauer JN; Mikulis D
    Spine (Phila Pa 1976); 2007 Sep; 32(19):2083-91. PubMed ID: 17762809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute traumatic cervical cord injury in patients with os odontoideum.
    Zhang Z; Zhou Y; Wang J; Chu T; Li C; Ren X; Wang W
    J Clin Neurosci; 2010 Oct; 17(10):1289-93. PubMed ID: 20655229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative magnetic resonance imaging characteristics: evaluation of prognostic value in the dog as a translational model for spinal cord injury.
    Boekhoff TM; Flieshardt C; Ensinger EM; Fork M; Kramer S; Tipold A
    J Spinal Disord Tech; 2012 May; 25(3):E81-7. PubMed ID: 22134733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autologous olfactory ensheathing cell transplantation in human spinal cord injury.
    FĂ©ron F; Perry C; Cochrane J; Licina P; Nowitzke A; Urquhart S; Geraghty T; Mackay-Sim A
    Brain; 2005 Dec; 128(Pt 12):2951-60. PubMed ID: 16219671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of diffusion-weighted MRI in thoracic spinal cord injury without radiographic abnormality.
    Shen H; Tang Y; Huang L; Yang R; Wu Y; Wang P; Shi Y; He X; Liu H; Ye J
    Int Orthop; 2007 Jun; 31(3):375-83. PubMed ID: 16835743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting neurologic recovery in cervical spinal cord injury with postoperative MR imaging.
    Boldin C; Raith J; Fankhauser F; Haunschmid C; Schwantzer G; Schweighofer F
    Spine (Phila Pa 1976); 2006 Mar; 31(5):554-9. PubMed ID: 16508551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The diagnostic impact of magnetic resonance imaging on the evaluation of suspected spinal cord disease.
    Offenbacher H
    Wien Klin Wochenschr; 1992; 104(19):589-93. PubMed ID: 1441553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.