These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 18962417)

  • 1. Electrothermal atomic-absorption spectrometry of antimony by use of a molybdenum micro-tube atomizer.
    Ohta K; Suzuki M
    Talanta; 1979 Mar; 26(3):207-10. PubMed ID: 18962417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrothermal atomic-absorption spectrometry of arsenic and its application to environmental samples.
    Ohta K; Suzuki M
    Talanta; 1978 Mar; 25(3):160-2. PubMed ID: 18962229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrothermal atomization of calcium and strontium in a molybdenum micro-tube.
    Suzuki M; Ohta K
    Talanta; 1981 Mar; 28(3):177-81. PubMed ID: 18962887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of antimony in rocks and sulphide ores by flame and electrothermal atomic-absorption spectrometry.
    Roy NK; Das AK
    Talanta; 1988 May; 35(5):406-8. PubMed ID: 18964542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elimination of interferences in electrothermal-atomization atomic-absorption spectrometry of cadmium.
    Ohta K; Aoki W; Mizuno T
    Talanta; 1988 Nov; 35(11):831-6. PubMed ID: 18964628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Some observations on the interferences in flameless atomic-absorption spectrometry of magnesium.
    Ohta K; Suzuki M
    Talanta; 1976 Jul; 23(7):560-1. PubMed ID: 18961928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of gold in biological materials by electrothermal atomic absorption spectrometry with a molybdenum tube atomizer.
    Ohta K; Isiyama T; Yokoyama M; Mizuno T
    Talanta; 1995 Feb; 42(2):263-7. PubMed ID: 18966226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydride generation in-atomizer collection atomic absorption spectrometry for the determination of antimony in acetic acid leachates from pewter cups.
    Dessuy MB; Kratzer J; Vale MG; Welz B; Dědina J
    Talanta; 2011 Dec; 87():255-61. PubMed ID: 22099676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer.
    Zurynková P; Dědina J; Kratzer J
    Anal Chim Acta; 2018 Jun; 1010():11-19. PubMed ID: 29447666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct determination of cadmium in calcium drug samples using electrothermal atomic absorption spectrometry with a metal tube atomizer and thiourea as a matrix modifier.
    Ahsan S; Kaneco S; Ohta K; Mizuno T; Taniguchi Y
    Talanta; 1999 Jan; 48(1):63-9. PubMed ID: 18967444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective determination of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone by atomic-absorption spectrometry with a carbon-tube atomizer.
    Kamada T; Yamamoto Y
    Talanta; 1977 May; 24(5):330-3. PubMed ID: 18962096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speciation of very low amounts of antimony in waters using magnetic core-modified silver nanoparticles and electrothermal atomic absorption spectrometry.
    López-García I; Rengevicova S; Muñoz-Sandoval MJ; Hernández-Córdoba M
    Talanta; 2017 Jan; 162():309-315. PubMed ID: 27837834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of indium in high purity antimony by electrothermal atomic absorption spectrometry (ETAAS) using boric acid as a modifier.
    Dash K; Thangavel S; Chaurasia SC; Arunachalam J
    Talanta; 2006 Oct; 70(3):602-8. PubMed ID: 18970815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrothermal atomization of arsenic, antimony and thallium using a graphite atomizer with refractory metal platforms.
    Detcheva A; Havezov I; Gentscheva G; Ivanova E
    Ann Chim; 2002; 92(5-6):595-9. PubMed ID: 12125464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrothermal atomization atomic absorption spectrometry of cadmium with a platinum tube atomizer.
    Ohta K; Itoh S; Mizuno T
    Talanta; 1991 Aug; 38(8):871-4. PubMed ID: 18965231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of indium atomization from different atomizer surfaces in electrothermal atomic absorption spectrometry (ETAAS).
    Yan XP; Ni ZM; Yang XT; Hong GQ
    Talanta; 1993 Dec; 40(12):1839-46. PubMed ID: 18965860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of antimony(III) and total antimony by single-drop microextraction combined with electrothermal atomic absorption spectrometry.
    Fan Z
    Anal Chim Acta; 2007 Mar; 585(2):300-4. PubMed ID: 17386678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of silicon by an indirect atomic-absorption method using carbon-rod electrothermal atomization.
    Tyson JF; Wan Ngah WS
    Talanta; 1983 Feb; 30(2):117-20. PubMed ID: 18963328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrothermal atomic-absorption and atomic-fluorescence spectrometry with a tungsten-coil atomizer.
    Muzgin VN; Atnashev YB; Korepanov VE; Pupyshev AA
    Talanta; 1987 Jan; 34(1):197-200. PubMed ID: 18964279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Recent developments of the atomization kinetics in electrothermal atomic absorption spectrometry].
    Yan XP; Jiang Y; Ni ZM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Oct; 21(5):649-54. PubMed ID: 12945321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.