These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18962452)

  • 1. A method for removal of chloride interference in determination of aluminium by atomic-absorption spectrometry with a graphite furnace.
    Matsusaki K; Yoshino T; Yamamoto Y
    Talanta; 1979 May; 26(5):377-80. PubMed ID: 18962452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interference effect of a mixture of magnesium, aluminium, sulfate and chloride on the atomization and vaporization of manganese in graphite furnace atomic absorption spectrometry.
    Ince H; Akman S
    Anal Sci; 2004 Apr; 20(4):695-9. PubMed ID: 15116971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of fluoride in sea-water by molecular absorption spectrometry of aluminium monofluoride after removal cation and anion interferences.
    Corvillo MA; Gomez MG; Rica CC
    Talanta; 1990 Jul; 37(7):719-24. PubMed ID: 18965008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aspects of chloride interference in zinc determination by atomic-absorption spectroscopy with electrothermal atomization.
    Ebdon L; Ellis AT; Ward RW
    Talanta; 1982 Apr; 29(4):297-302. PubMed ID: 18963131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods for the determination of trace aluminium contamination in dialysis fluids.
    Woolfson AD; Gracey GM
    J Clin Pharm Ther; 1988 Aug; 13(4):243-8. PubMed ID: 3069848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of transition elements to enhance sensitivity for selenium determination by graphite-furnace atomic-absorption spectrophotometry combined with solvent extraction with the APDC-MIBK system.
    Kamada T; Yamamoto Y
    Talanta; 1980 Jun; 27(6):473-6. PubMed ID: 18962711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of chloride in drinking and ground water by AlCl molecular absorption spectrometry using graphite furnace atomic absorption spectrometer.
    Parvinen P; Lajunen LH
    Talanta; 1999 Aug; 50(1):67-71. PubMed ID: 18967695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of germanium by graphite-furnace atomic-absorption spectrometry.
    Sohrin Y; Isshiki K; Kuwamoto T; Nakayama E
    Talanta; 1987 Mar; 34(3):341-4. PubMed ID: 18964310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of some matrix elements on atomization of cobalt in graphite-furnace atomic-absorption spectrometry.
    Hulanicki A; Karwowska R; Sowinski J
    Talanta; 1981 Jul; 28(7 Pt 1):455-9. PubMed ID: 18963053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of arsenic, cadmium, lead and selenium in highly mineralized waters by graphite-furnace atomic-absorption spectrometry.
    Bozsai G; Schlemmer G; Grobenski Z
    Talanta; 1990 Jun; 37(6):545-53. PubMed ID: 18964978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sensitive atomic-absorption spectrometric method for the determination of tin with atomization from impregnated graphite surfaces.
    Fritzsche H; Wegscheider W; Knapp G; Ortner HM
    Talanta; 1979 Mar; 26(3):219-26. PubMed ID: 18962420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of cobalt atomization from different atomizer surfaces in graphite-furnace atomic-absorption spectrometry.
    Chakrabarti CL; Cathum SJ
    Talanta; 1990 Dec; 37(12):1111-7. PubMed ID: 18965080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct determination of boron in a cobalt-based alloy by graphite furnace-atomic absorption spectrometry.
    Gong B; Liu Y; Xu Y; Li Z; Lin T
    Talanta; 1995 Oct; 42(10):1419-23. PubMed ID: 18966371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Atomization efficiency of graphite furnace in atomic absorption spectrometry].
    Zhong MH; Zheng YS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Feb; 22(1):135-8. PubMed ID: 12940051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of various salts on the determination of arsenic by graphite furnace atomic absorption spectrometry. Direct determination in seawater.
    Cabon JY
    Fresenius J Anal Chem; 2000 Aug; 367(8):714-21. PubMed ID: 11220605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Determination of selenium by platform graphite furnace atomic absorption spectrometry].
    Xie W; Yao J; Ma G
    Guang Pu Xue Yu Guang Pu Fen Xi; 1998 Dec; 18(6):700-2. PubMed ID: 15825283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of trace and minor elements in alloys by atomic-absorption spectroscopy using an induction-heated graphite-well furnace as atom source-II.
    Ashy MA; Headridge JB; Sowerbutts A
    Talanta; 1974 Jun; 21(6):649-52. PubMed ID: 18961510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of atomization from a graphite platform in graphite-furnace atomic-absorption spectrometry.
    Chakrabarti CL; Chang SB; Thong PW; Huston TJ; Wu S
    Talanta; 1987 Feb; 34(2):259-69. PubMed ID: 18964293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Determination of lead in grape wine by graphite furnace atomic absorption spectrometry with ammonium dihydric phosphate as modifier].
    Zuo ZY; Zhang M; Sun ZA; Wang DS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Oct; 22(5):859-61. PubMed ID: 12938452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of cadmium in paint samples by graphite furnace atomic absorption spectrometry with optical temperature control.
    Wang Z; Wang S; Cai M
    Talanta; 2007 Jul; 72(5):1723-7. PubMed ID: 19071823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.