BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 18962827)

  • 1. Large-scale radon hazard evaluation in the Oslofjord region of Norway utilizing indoor radon concentrations, airborne gamma ray spectrometry and geological mapping.
    Smethurst MA; Strand T; Sundal AV; Rudjord AL
    Sci Total Environ; 2008 Dec; 407(1):379-93. PubMed ID: 18962827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of geological factors on indoor radon concentrations in Norway.
    Sundal AV; Henriksen H; Soldal O; Strand T
    Sci Total Environ; 2004 Jul; 328(1-3):41-53. PubMed ID: 15207572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The predictive power of airborne gamma ray survey data on the locations of domestic radon hazards in Norway: A strong case for utilizing airborne data in large-scale radon potential mapping.
    Smethurst MA; Watson RJ; Baranwal VC; Rudjord AL; Finne I
    J Environ Radioact; 2017 Jan; 166(Pt 2):321-340. PubMed ID: 27105766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of mapped geology as a predictor of radon potential in Norway.
    Watson RJ; Smethurst MA; Ganerød GV; Finne I; Rudjord AL
    J Environ Radioact; 2017 Jan; 166(Pt 2):341-354. PubMed ID: 27297055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Northern Ireland radon maps based on indoor radon measurements and geology with maps derived by predictive modelling of airborne radiometric and ground permeability data.
    Appleton JD; Miles JC; Young M
    Sci Total Environ; 2011 Mar; 409(8):1572-83. PubMed ID: 21310464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soil radium, soil gas radon and indoor radon empirical relationships to assist in post-closure impact assessment related to near-surface radioactive waste disposal.
    Appleton JD; Cave MR; Miles JC; Sumerling TJ
    J Environ Radioact; 2011 Mar; 102(3):221-34. PubMed ID: 20951477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radon potential mapping of the Tralee-Castleisland and Cavan areas (Ireland) based on airborne gamma-ray spectrometry and geology.
    Appleton JD; Doyle E; Fenton D; Organo C
    J Radiol Prot; 2011 Jun; 31(2):221-35. PubMed ID: 21617292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalously high radon concentrations in dwellings located on permeable glacial sediments.
    Sundal AV; Jensen CL; Anestad K; Strand T
    J Radiol Prot; 2007 Sep; 27(3):287-98. PubMed ID: 17768329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An approach to define potential radon emission level maps using indoor radon concentration measurements and radiogeochemical data positive proportion relationships.
    Drolet JP; Martel R; Poulin P; Dessau JC; Lavoie D; Parent M; Lévesque B
    J Environ Radioact; 2013 Oct; 124():57-67. PubMed ID: 23660346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indoor gamma radiation and radon concentrations in a Norwegian carbonatite area.
    Sundal AV; Strand T
    J Environ Radioact; 2004; 77(2):175-89. PubMed ID: 15312702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous measurements of indoor radon, radon-thoron progeny and high-resolution gamma spectrometry in Greek dwellings.
    Clouvas A; Xanthos S; Antonopoulos-Domis M
    Radiat Prot Dosimetry; 2006; 118(4):482-90. PubMed ID: 16410290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil gas radon, indoor radon and gamma dose rate in CZ: contribution to geostatistical methods for European atlas of natural radiations.
    Barnet I; Fojtíková I
    Radiat Prot Dosimetry; 2008; 130(1):81-4. PubMed ID: 18397927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methodology developed to make the Quebec indoor radon potential map.
    Drolet JP; Martel R; Poulin P; Dessau JC
    Sci Total Environ; 2014 Mar; 473-474():372-80. PubMed ID: 24378928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indoor radon in a Spanish region with different gamma exposure levels.
    Quindós LS; Fernández PL; Sainz C; Fuente I; Nicolás J; Quindós L; Arteche J
    J Environ Radioact; 2008 Oct; 99(10):1544-7. PubMed ID: 18255206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A geostatistical autopsy of the Austrian indoor radon survey (1992-2002).
    Dubois G; Bossew P; Friedmann H
    Sci Total Environ; 2007 May; 377(2-3):378-95. PubMed ID: 17368512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distance to faults as a proxy for radon gas concentration in dwellings.
    Drolet JP; Martel R
    J Environ Radioact; 2016 Feb; 152():8-15. PubMed ID: 26630035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indoor radon in rural dwellings of the South-Pannonian region.
    Forkapić S; Bikit I; Slivka J; Conkić LJ; Vesković M; Todorović N; Varga E; Mrda D; Hulber E
    Radiat Prot Dosimetry; 2007; 123(3):378-83. PubMed ID: 17077094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of airborne radon levels in Paarl houses (South Africa) and associated source terms, using electret ion chambers and gamma-ray spectrometry.
    Lindsay R; Newman RT; Speelman WJ
    Appl Radiat Isot; 2008 Nov; 66(11):1611-4. PubMed ID: 18524606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural gamma radiation map (MARNA) and indoor radon levels in Spain.
    Quindós Poncela LS; Fernández PL; Gómez Arozamena J; Sainz C; Fernández JA; Suarez Mahou E; Martin Matarranz JL; Cascón MC
    Environ Int; 2004 Feb; 29(8):1091-6. PubMed ID: 14680892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indoor radon measurements in south west England explained by topsoil and stream sediment geochemistry, airborne gamma-ray spectroscopy and geology.
    Ferreira A; Daraktchieva Z; Beamish D; Kirkwood C; Lister TR; Cave M; Wragg J; Lee K
    J Environ Radioact; 2018 Jan; 181():152-171. PubMed ID: 27216317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.