BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 18963270)

  • 1. Change in consistency and composition of trichloroethylene- and trichloroethane-treated asphalts.
    Abu-Elgheit MA; Ijam MJ
    Talanta; 1982 Dec; 29(12):1131-4. PubMed ID: 18963270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Asphalt Aging Using Multivariate Analysis Applied to Saturates, Aromatics, Resins, and Asphaltene Determinator Data.
    Bruneau L; Tisse S; Michon L; Cardinael P
    ACS Omega; 2023 Jul; 8(28):24773-24785. PubMed ID: 37483178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal behaviors and harmful volatile constituents released from asphalt components at high temperature.
    Xia W; Xu T; Wang H
    J Hazard Mater; 2019 Jul; 373():741-752. PubMed ID: 30959288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of volatile and non-volatile nickel and vanadium compounds in crude oil using electrothermal atomic absorption spectrometry after oil fractionation into saturates, aromatics, resins and asphaltenes.
    Vale MG; Silva MM; Damin IC; Sanches Filho PJ; Welz B
    Talanta; 2008 Feb; 74(5):1385-91. PubMed ID: 18371794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the Relationships between Waste Cooking Oil Qualities and Rejuvenated Asphalt Properties.
    Zhang D; Chen M; Wu S; Liu J; Amirkhanian S
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Water Solute Exposure on the Chemical Evolution and Rheological Properties of Asphalt.
    Pang L; Zhang X; Wu S; Ye Y; Li Y
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29891770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Rejuvenating Potential of Plasticizers on Oxidatively Aged Asphalts: Rheological and Molecular Dynamics Perspectives.
    Cao W; Li X
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aging Mechanism of a Diatomite-Modified Asphalt Binder Using Fourier-Transform Infrared (FTIR) Spectroscopy Analysis.
    Zhang P; Guo Q; Tao J; Ma D; Wang Y
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30917486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility.
    Polacco G; Filippi S; Merusi F; Stastna G
    Adv Colloid Interface Sci; 2015 Oct; 224():72-112. PubMed ID: 26277208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvements of Developed Graphite Based Composite Anti-Aging Agent on Thermal Aging Properties of Asphalt.
    Hu Z; Xu T; Liu P; Oeser M; Wang H
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32927682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ageing on rheological properties of storage-stable SBS/sulfur-modified asphalts.
    Zhang F; Yu J; Wu S
    J Hazard Mater; 2010 Oct; 182(1-3):507-17. PubMed ID: 20637542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheology of asphalts modified with glycidylmethacrylate functionalized polymers.
    Polacco G; Stastna J; Biondi D; Antonelli F; Vlachovicova Z; Zanzotto L
    J Colloid Interface Sci; 2004 Dec; 280(2):366-73. PubMed ID: 15533409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscosity function in polymer-modified asphalts.
    Stastna J; Zanzotto L; Vacin OJ
    J Colloid Interface Sci; 2003 Mar; 259(1):200-7. PubMed ID: 12651149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Action of microorganisms on bituminous materials. I. Effect of bacteria on asphalt viscosity.
    Traxler RW; Proteau PR; Traxler RN
    Appl Microbiol; 1965 Nov; 13(6):838-41. PubMed ID: 5866034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced biodegradation of asphalt in the presence of Tween surfactants, Mn(2+) and H2O2 by Pestalotiopsis sp. in liquid medium and soil.
    Yanto DH; Tachibana S
    Chemosphere; 2014 May; 103():105-13. PubMed ID: 24331036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent extraction for heavy crude oil removal from contaminated soils.
    Li X; Du Y; Wu G; Li Z; Li H; Sui H
    Chemosphere; 2012 Jun; 88(2):245-9. PubMed ID: 22483725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Characteristics, Kinetic Models, and Volatile Constituents during the Energy Conversion of Bituminous SARA Fractions in Air.
    Xia W; Xu T
    ACS Omega; 2020 Aug; 5(33):20831-20841. PubMed ID: 32875218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of trichloroethylene, 1,1,1-trichloroethane and carbon tetrachloride on plasma lipoproteins of rats.
    Honma T
    Ind Health; 1990; 28(4):159-74. PubMed ID: 2283324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Planar limit-assisted structural interpretation of saturates/aromatics/resins/asphaltenes fractionated crude oil compounds observed by Fourier transform ion cyclotron resonance mass spectrometry.
    Cho Y; Kim YH; Kim S
    Anal Chem; 2011 Aug; 83(15):6068-73. PubMed ID: 21692518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of micronuclei in V79 cells by fractions of roofing asphalt fume condensate.
    Qian H; Whong W; Olsen L; Nath J; Ong T
    Mutat Res; 1999 May; 441(2):163-70. PubMed ID: 10333530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.