These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18963443)

  • 41. A remote in situ monitor based on continuous flow analysis for the quantitation of sub-micromolar levels of hexavalent chromium in natural waters.
    Singer Pressman MA; Aldstadt Iii JH
    J Environ Monit; 2005 Aug; 7(8):809-13. PubMed ID: 16049583
    [TBL] [Abstract][Full Text] [Related]  

  • 42. XANES study of Cr sorbed by a kitchen waste compost from water.
    Wei YL; Lee YC; Hsieh HF
    Chemosphere; 2005 Nov; 61(7):1051-60. PubMed ID: 15893802
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A catalytic adsorptive stripping voltammetric procedure for trace determination of Cr(VI) in natural samples containing high concentrations of humic substances.
    Grabarczyk M
    Anal Bioanal Chem; 2008 Feb; 390(3):979-86. PubMed ID: 18060391
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cr(VI) and Cr(VI)-diphenylcarbazide removal from aqueous solutions using an iron rotating disc electrode.
    Campos E; Barrera-Díaz C; Ureña-Núñez F; Palomar-Pardavé M
    Environ Technol; 2007 Jan; 28(1):1-9. PubMed ID: 17283943
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selective and sensitive speciation analysis of Cr(VI) and Cr(III), at sub-μgL
    Tahmasebi Z; Davarani SSH
    Talanta; 2016 Dec; 161():640-646. PubMed ID: 27769459
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Separation of Cr(III) and Cr(VI) using melamine-formaldehyde resin and determination of both species in water by FAAS.
    Demirata B; Tor I; Filik H; Afşar H
    Anal Bioanal Chem; 1996 Oct; 356(6):375-7. PubMed ID: 15048337
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sorption studies of Cr(VI) from aqueous solution using bio-char as an adsorbent.
    Hyder AH; Begum SA; Egiebor NO
    Water Sci Technol; 2014; 69(11):2265-71. PubMed ID: 24901621
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(VI) anions: sorption capacity and uptake mechanisms.
    Deng S; Ting YP
    Environ Sci Technol; 2005 Nov; 39(21):8490-6. PubMed ID: 16294892
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Methods for determining soluble and insoluble Cr III and Cr VI compounds in welding fumes.
    Matczak W; Chmielnicka J
    Pol J Occup Med; 1989; 2(4):376-88. PubMed ID: 2489439
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On-line preconcentration using dual mini-columns for the speciation of chromium(III) and chromium(VI) and its application to water samples as studied by inductively coupled plasma-atomic emission spectrometry.
    Sumida T; Ikenoue T; Hamada K; Sabarudin A; Oshima M; Motomizu S
    Talanta; 2005 Dec; 68(2):388-93. PubMed ID: 18970334
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of sequential extraction procedures for soluble and insoluble hexavalent chromium compounds in workplace air samples.
    Ashley K; Applegate GT; Marcy AD; Drake PL; Pierce PA; Carabin N; Demange M
    J Environ Monit; 2009 Feb; 11(2):318-25. PubMed ID: 19212588
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Use of modified sorbent for the separation and preconcentration of chromium species from industrial waste water.
    Memon JU; Memon SQ; Bhanger MI; Khuhawar MY
    J Hazard Mater; 2009 Apr; 163(2-3):511-6. PubMed ID: 18703280
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Selective preconcentration and determination of chromium(VI) using a flat sheet polymer inclusion sorbent: potential application for Cr(VI) determination in real samples.
    Scindia YM; Pandey AK; Reddy AV; Manohar SB
    Anal Chem; 2002 Aug; 74(16):4204-12. PubMed ID: 12199594
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Speciation of chromium in mineral waters and salinas by solid-phase extraction and graphite furnace atomic absorption spectrometry.
    Chwastowska J; Skwara W; Sterlińska E; Pszonicki L
    Talanta; 2005 Jun; 66(5):1345-9. PubMed ID: 18970128
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Speciation analysis of chromium(VI) and chromium(III) in water sample using flame atomic absorption spectrometry with TOA-benzene extraction separation system].
    Shawket A; Wang JD; Horshida
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Dec; 25(12):2082-4. PubMed ID: 16544512
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Magnetic solid-phase extraction combined with graphite furnace atomic absorption spectrometry for speciation of Cr(III) and Cr(VI) in environmental waters.
    Jiang HM; Yang T; Wang YH; Lian HZ; Hu X
    Talanta; 2013 Nov; 116():361-7. PubMed ID: 24148416
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Extractive removal of chromium (VI) from industrial waste solution.
    Agrawal A; Pal C; Sahu KK
    J Hazard Mater; 2008 Nov; 159(2-3):458-64. PubMed ID: 18417285
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment.
    Broadway A; Cave MR; Wragg J; Fordyce FM; Bewley RJ; Graham MC; Ngwenya BT; Farmer JG
    Sci Total Environ; 2010 Dec; 409(2):267-77. PubMed ID: 21035835
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cr(VI) removal from aqueous solution by activated carbon coated with quaternized poly(4-vinylpyridine).
    Fang J; Gu Z; Gang D; Liu C; Ilton ES; Deng B
    Environ Sci Technol; 2007 Jul; 41(13):4748-53. PubMed ID: 17695924
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chromium speciation study in polluted waters using catalytic adsorptive stripping voltammetry and tangential flow filtration.
    Bobrowski A; Baś B; Dominik J; Niewiara E; Szalińska E; Vignati D; Zare Bski J
    Talanta; 2004 Jul; 63(4):1003-12. PubMed ID: 18969527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.