These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 18964275)

  • 1. Liquid-liquid extraction of elements by antipyrine and diantipyrylmethane salts from non-aqueous solutions or in systems without an organic solvent.
    Petrov BI; Zhivopistsev VP
    Talanta; 1987 Jan; 34(1):175-8. PubMed ID: 18964275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of dispersive solid phase extraction and deep eutectic solvent-based air-assisted liquid-liquid microextraction followed by gas chromatography-mass spectrometry as an efficient analytical method for the quantification of some tricyclic antidepressant drugs in biological fluids.
    Mohebbi A; Yaripour S; Farajzadeh MA; Afshar Mogaddam MR
    J Chromatogr A; 2018 Oct; 1571():84-93. PubMed ID: 30119972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersive liquid-liquid microextraction combined with semi-automated in-syringe back extraction as a new approach for the sample preparation of ionizable organic compounds prior to liquid chromatography.
    Melwanki MB; Fuh MR
    J Chromatogr A; 2008 Jul; 1198-1199():1-6. PubMed ID: 18513730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a new sample preparation method based on liquid-liquid-liquid extraction combined with dispersive liquid-liquid microextraction and its application on unfiltered samples containing high content of solids.
    Farajzadeh MA; Abbaspour M
    Talanta; 2017 Nov; 174():111-121. PubMed ID: 28738556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of performance parameters of photothermal procedures in homogeneous and heterogeneous systems.
    Proskurnin MA; Ryndina ES; Tsar'kov DS; Shkinev VM; Smirnova A; Hibara A
    Anal Sci; 2011; 27(4):381. PubMed ID: 21478613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of organic compounds in water using dispersive liquid-liquid microextraction.
    Rezaee M; Assadi Y; Milani Hosseini MR; Aghaee E; Ahmadi F; Berijani S
    J Chromatogr A; 2006 May; 1116(1-2):1-9. PubMed ID: 16574135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green aspects, developments and perspectives of liquid phase microextraction techniques.
    Spietelun A; Marcinkowski Ł; de la Guardia M; Namieśnik J
    Talanta; 2014 Feb; 119():34-45. PubMed ID: 24401382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-density solvent-based dispersive liquid-liquid microextraction combined with single-drop microextraction for the fast determination of chlorophenols in environmental water samples by high performance liquid chromatography-ultraviolet detection.
    Li X; Xue A; Chen H; Li S
    J Chromatogr A; 2013 Mar; 1280():9-15. PubMed ID: 23375770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new ionic liquid-water-organic solvent three phase microextraction for simultaneous preconcentration flavonoids and anthraquinones from traditional Chinese prescription.
    Zhang LS; Hu S; Chen X; Bai XH; Li QS
    J Pharm Biomed Anal; 2013 Dec; 86():36-9. PubMed ID: 23969331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response surface methodology based on central composite design as a chemometric tool for optimization of dispersive-solidification liquid-liquid microextraction for speciation of inorganic arsenic in environmental water samples.
    Asadollahzadeh M; Tavakoli H; Torab-Mostaedi M; Hosseini G; Hemmati A
    Talanta; 2014 Jun; 123():25-31. PubMed ID: 24725860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water with low concentration of surfactant in dispersed solvent-assisted emulsion dispersive liquid-liquid microextraction for the determination of organochlorine pesticides in aqueous samples.
    Li Y; Chen PS; Huang SD
    J Chromatogr A; 2013 Jul; 1300():51-7. PubMed ID: 23566919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-density solvent-based vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction combined with gas chromatography-mass spectrometry for the fast determination of phthalate esters in bottled water.
    Zhang Y; Lee HK
    J Chromatogr A; 2013 Jan; 1274():28-35. PubMed ID: 23290358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of 3-Ethylamino-but-2-enoic acid phenylamide as a new ligand for preconcentration of lanthanides from aqueous media by liquid-liquid extraction prior to ICP-MS analysis.
    Varbanova EK; Angelov PA; Stefanova VM
    Talanta; 2016 Nov; 160():389-399. PubMed ID: 27591629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical use of solvent extraction with acetonitrile/water/chloroform and 1-propanol/water/cyclohexane mixtures.
    Hori T; Fujinaga T
    Talanta; 1985 Aug; 32(8 Pt 2):735-43. PubMed ID: 18963997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation, concentration and determination of chloramphenicol in environment and food using an ionic liquid/salt aqueous two-phase flotation system coupled with high-performance liquid chromatography.
    Han J; Wang Y; Yu C; Li C; Yan Y; Liu Y; Wang L
    Anal Chim Acta; 2011 Jan; 685(2):138-45. PubMed ID: 21168562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical Reaction-Driven Spreading of an Organic Extractant on the Gas-Water Interface: Insight into the Controllable Formation of a Gas Bubble-Supported Organic Extractant Liquid Membrane.
    Liu J; Huang K; Liu W; Liu H
    Langmuir; 2019 Mar; 35(10):3859-3868. PubMed ID: 30776245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction with solidification of floating organic droplet combined with HPLC for the determination of neonicotinoid pesticides.
    Vichapong J; Burakham R; Srijaranai S
    Talanta; 2013 Dec; 117():221-8. PubMed ID: 24209333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific Salt Effect on the Interaction between Rare Earth Ions and Trioctylphosphine Oxide Molecules at the Organic-Aqueous Two-Phase Interface: Experiments and Molecular Dynamics Simulations.
    Sun P; Huang K; Liu H
    Langmuir; 2018 Sep; 34(38):11374-11383. PubMed ID: 30180592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fully automated effervescence assisted dispersive liquid-liquid microextraction based on a stepwise injection system. Determination of antipyrine in saliva samples.
    Medinskaia K; Vakh C; Aseeva D; Andruch V; Moskvin L; Bulatov A
    Anal Chim Acta; 2016 Jan; 902():129-134. PubMed ID: 26703262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of continuous dispersive liquid-liquid microextraction performed in home-made device for extraction and preconcentration of aryloxyphenoxy-propionate herbicides from aqueous samples followed by gas chromatography-flame ionization detection.
    Farajzadeh MA; Mohebbi A; Feriduni B
    Anal Chim Acta; 2016 May; 920():1-9. PubMed ID: 27114217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.