These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 18964478)

  • 1. A new ion sensor based on fiber optics.
    Bright FV; Poirier GE; Hieftje GM
    Talanta; 1988 Feb; 35(2):113-8. PubMed ID: 18964478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence quenching studies on the interaction of a novel deepened cavitand towards some transition metal ions.
    Li Y; Csók Z; Szuroczki P; Kollár L; Kiss L; Kunsági-Máté S
    Anal Chim Acta; 2013 Oct; 799():51-6. PubMed ID: 24091374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel boronic acid-based fluorescent sensor for selectively recognizing Fe
    Fang G; Wang H; Bian Z; Guo M; Wu Z; Yao Q
    RSC Adv; 2019 Jun; 9(35):20306-20313. PubMed ID: 35514712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromo/Fluorogenic Detection of Co(2+), Hg(2+) and Cu(2+) by the Simple Schiff Base Sensor.
    Saleem M; Khang CH; Kim MH; Lee KH
    J Fluoresc; 2016 Jan; 26(1):11-22. PubMed ID: 26585349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Naked-eye" colorimetric and "turn-on" fluorometric chemosensors for reversible Hg2+ detection.
    Wanichacheva N; Praikaew P; Suwanich T; Sukrat K
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():908-14. PubMed ID: 24161855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent Polyamide-Based Rhodamine Hydrazide Moieties with Oxethyl as Spacer for Detection of Cr(3+), Fe(3+), and Hg(2+) Ions in Water.
    Geng TM; Wang X; Jiang H; Song W; Ni RF; Chen J; Wang Y
    J Fluoresc; 2016 May; 26(3):977-85. PubMed ID: 26979056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A New Spiropyran-Based Sensor for Colorimetric and Fluorescent Detection of Divalent Cu
    Wang Y; Xu Z; Dai X; Li H; Yu S; Meng W
    J Fluoresc; 2019 May; 29(3):569-575. PubMed ID: 30919128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation induced emission enhancement from Bathophenanthroline microstructures and its potential use as sensor of mercury ions in water.
    Mazumdar P; Das D; Sahoo GP; Salgado-Morán G; Misra A
    Phys Chem Chem Phys; 2014 Apr; 16(13):6283-93. PubMed ID: 24569390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Investigation of Optical Properties of N-(Rhodamine-B)-Lactam-Ethylenediamine (RhB-EDA) Fluorescent Probe.
    Soršak E; Volmajer Valh J; Korent Urek Š; Lobnik A
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29662009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel Schiff base: Synthesis, structural characterisation and comparative sensor studies for metal ion detections.
    Köse M; Purtas S; Güngör SA; Ceyhan G; Akgün E; McKee V
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1388-94. PubMed ID: 25459697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Concentration distribution of metal elements in atmospheric aerosol under different weather conditions in Qingdao Coastal Region].
    Chen XJ; Qi JH; Liu N; Zhang XY; Shen HQ; Liu MX
    Huan Jing Ke Xue; 2014 Oct; 35(10):3651-62. PubMed ID: 25693366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of triazole into a quinoline-rhodamine conjugate imparts iron(III) selective complexation permitting detection at nanomolar levels.
    Chereddy NR; Thennarasu S; Mandal AB
    Dalton Trans; 2012 Oct; 41(38):11753-9. PubMed ID: 22903587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Fluorescence Resonance Energy Transfer Detection of Cobalt Ions by Silver Triangular Nanoplates and Rhodamine 6G].
    Zhang XQ; Peng J; Ling J; Liu CJ; Cao QE; Ding ZT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Apr; 35(4):951-5. PubMed ID: 26197581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly selective and sensitive photoswitchable fluorescent probe for Hg2+ based on bisthienylethene-rhodamine 6G dyad and for live cells imaging.
    Xu L; Wang S; Lv Y; Son YA; Cao D
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():567-74. PubMed ID: 24691371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Selective Turn off Fluorescence Sensor Based on Propranolol-SDS Assemblies for Fe
    Gujar V; Sangale V; Ottoor D
    J Fluoresc; 2019 Jan; 29(1):91-100. PubMed ID: 30361859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrically induced fluorescence Fe
    Tavoli F; Alizadeh N
    Anal Chim Acta; 2016 Nov; 946():88-95. PubMed ID: 27823673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly selective and sensitive fluorescent sensor for the rapid detection of Hg²⁺ based on phenylamine-oligothiophene derivative.
    Niu Q; Wu X; Zhang S; Li T; Cui Y; Li X
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 153():143-6. PubMed ID: 26298681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Amidochlorin-Based Colorimetric Fluorescent Probe for Selective Cu(2+) Detection.
    Li W; Zhu G; Li J; Wang Z; Jin Y
    Molecules; 2016 Jan; 21(1):E107. PubMed ID: 26797591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dansyl-anthracene dyads for ratiometric fluorescence recognition of Cu2+.
    Kaur K; Kumar S
    Dalton Trans; 2011 Mar; 40(11):2451-8. PubMed ID: 21286643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles.
    Chen J; Zeng F; Wu S; Su J; Zhao J; Tong Z
    Nanotechnology; 2009 Sep; 20(36):365502. PubMed ID: 19687556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.