These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 18965230)
1. Comparative study of a beenakker cavity and a surfatron in combination with electrothermal evaporation from a tungsten coil for microwave plasma optical emission spectrometry (MIP-AES). Richts U; Broekaert JA; Tschöpel P; Tölg G Talanta; 1991 Aug; 38(8):863-9. PubMed ID: 18965230 [TBL] [Abstract][Full Text] [Related]
2. Modified surfatron device to improve microwave-plasma-assisted generation of RONS and methylene blue degradation in water. Amaro-Gahete J; Romero-Salguero FJ; Garcia MC Chemosphere; 2024 Feb; 349():140820. PubMed ID: 38040253 [TBL] [Abstract][Full Text] [Related]
3. Determination of halides by microwave induced plasma and stabilized capacitive plasma atomic emission spectrometry after on-line continuous halogen generation. Camuña JF; Montes M; Pereiro R; Sanz-Medel A; Katschthaler C; Gross R; Knapp G Talanta; 1997 Apr; 44(4):535-44. PubMed ID: 18966772 [TBL] [Abstract][Full Text] [Related]
4. A miniaturized capacitively coupled plasma microtorch optical emission spectrometer and a Rh coiled-filament as small-sized electrothermal vaporization device for simultaneous determination of volatile elements from liquid microsamples: spectral and analytical characterization. Frentiu T; Darvasi E; Butaciu S; Ponta M; Petreus D; Mihaltan AI; Frentiu M Talanta; 2014 Nov; 129():72-8. PubMed ID: 25127566 [TBL] [Abstract][Full Text] [Related]
5. Preliminary characterization of a low-powered microwave induced flame plasma for direct organic solvent nebulization. Ng KC; Bucay P Rev Sci Instrum; 2011 Dec; 82(12):125101. PubMed ID: 22225243 [TBL] [Abstract][Full Text] [Related]
6. Determination of bromide by low power surfatron microwave induced plasma after bromine continuous generation. Calzada MD; Quintero MC; Gamero A; Cotrino J; Uría JE; Sanz-Medel A Talanta; 1992 Apr; 39(4):341-7. PubMed ID: 18965385 [TBL] [Abstract][Full Text] [Related]
7. Slurry micro-sampling technique for use in argon-helium microwave induced plasma optical emission spectrometry. Ślachciński M Talanta; 2016 Dec; 161():812-818. PubMed ID: 27769487 [TBL] [Abstract][Full Text] [Related]
8. [Spectroscopic diagnostic of atmospheric pressure argon microwave induced plasma]. Yang C; Pu X; Lin L; Wen X; Xu H Guang Pu Xue Yu Guang Pu Fen Xi; 1997 Dec; 17(6):40-4. PubMed ID: 15810244 [TBL] [Abstract][Full Text] [Related]
9. Spectroscopic characterization of two different microwave (2.45 GHz) induced argon plasmas at atmospheric pressure. García MC; Yubero C; Calzada MD; Martínez-Jiménez MP Appl Spectrosc; 2005 Apr; 59(4):519-28. PubMed ID: 15901338 [TBL] [Abstract][Full Text] [Related]
10. Optimization of experimental parameters for the determination of mercury by MIP/AES. Murillo M; Carrión N; Chirinos J; Gammiero A; Fassano E Talanta; 2001 Apr; 54(2):389-95. PubMed ID: 18968263 [TBL] [Abstract][Full Text] [Related]
11. Electrothermal vaporization for universal liquid sample introduction to dielectric barrier discharge microplasma for portable atomic emission spectrometry. Jiang X; Chen Y; Zheng C; Hou X Anal Chem; 2014 Jun; 86(11):5220-4. PubMed ID: 24830753 [TBL] [Abstract][Full Text] [Related]
12. Optimization of electrochemical hydride generation in a miniaturized electrolytic flow cell coupled to microwave-induced plasma atomic emission spectrometry for the determination of selenium. Schermer S; Jurica L; Paumard J; Beinrohr E; Matysik FM; Broekaert JA Fresenius J Anal Chem; 2001 Nov; 371(6):740-5. PubMed ID: 11768460 [TBL] [Abstract][Full Text] [Related]
13. Determination of cadmium in rice and water by tungsten coil electrothermal vaporization-atomic fluorescence spectrometry and tungsten coil electrothermal atomic absorption spectrometry after cloud point extraction. Wen X; Wu P; Chen L; Hou X Anal Chim Acta; 2009 Sep; 650(1):33-8. PubMed ID: 19720169 [TBL] [Abstract][Full Text] [Related]
14. Interface-free integration of electrothermal vaporizer and point discharge microplasma for miniaturized optical emission spectrometer. Deng Y; Hu J; Li M; He L; Li K; Hou X; Jiang X Anal Chim Acta; 2021 Jun; 1163():338502. PubMed ID: 34024418 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of tungsten coil electrothermal vaporization-Ar/H2 flame atomic fluorescence spectrometry for determination of eight traditional hydride-forming elements and cadmium without chemical vapor generation. Wu P; Wen X; He L; He Y; Chen M; Hou X Talanta; 2008 Jan; 74(4):505-11. PubMed ID: 18371668 [TBL] [Abstract][Full Text] [Related]
17. Spectroscopic and analytical characteristics of an inductively coupled argon plasma combined with hydride generation with or without simultaneous introduction of the sample aerosol for optical emission spectrometry. Pohl P; Broekaert JA Anal Bioanal Chem; 2010 Sep; 398(1):537-45. PubMed ID: 20582404 [TBL] [Abstract][Full Text] [Related]
18. A new atomization cell for trace metal determinations by tungsten coil atomic spectrometry. Donati GL; Wildman RB; Jones BT Anal Chim Acta; 2011 Feb; 688(1):36-42. PubMed ID: 21296202 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous determination of bismuth and tellurium in steels by high power nitrogen microwave induced plasma atomic emission spectrometry coupled with the hydride generation technique. Matsumoto A; Shiozaki T; Nakahara T Anal Bioanal Chem; 2004 May; 379(1):90-5. PubMed ID: 14747893 [TBL] [Abstract][Full Text] [Related]
20. Determination of trace Ag, Au, Ge, Pb, Sn and Te by microwave plasma torch atomic emission spectrometry coupled with an electrothermal vaporization sample introduction system. Jin Q; Zhang H; Yang W; Jin Q; Shi Y Talanta; 1997 Sep; 44(9):1605-14. PubMed ID: 18966899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]