These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 18965286)

  • 1. Solution infrared spectroelectrochemistry: A review.
    Ashley K
    Talanta; 1991 Nov; 38(11):1209-18. PubMed ID: 18965286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman and IR Spectroelectrochemical Methods as Tools to Analyze Conjugated Organic Compounds.
    Blacha-Grzechnik A; Karon K; Data P
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30371655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast 2D-IR spectroelectrochemistry of flavin mononucleotide.
    El Khoury Y; Van Wilderen LJ; Bredenbeck J
    J Chem Phys; 2015 Jun; 142(21):212416. PubMed ID: 26049436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micrometer-Precise Determination of the Thin Electrolyte Layer of a Spectroelectrochemical Cell by Microelectrode Approach Curves.
    Hiltrop D; Masa J; Botz AJR; Lindner A; Schuhmann W; Muhler M
    Anal Chem; 2017 Apr; 89(8):4367-4372. PubMed ID: 28337917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SERS spectroelectrochemical study of electrode processes at copper hexacyanoferrate modified electrode.
    Mažeikienė R; Niaura G; Malinauskas A
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun; 181():200-207. PubMed ID: 28364667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically transparent diamond electrode for use in ir transmission spectroelectrochemical measurements.
    Dai Y; Proshlyakov DA; Zak JK; Swain GM
    Anal Chem; 2007 Oct; 79(19):7526-33. PubMed ID: 17784734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical aspects of absorption spectroelectrochemistry at a platinum electrode-II Quantitative basis and study of organic compounds.
    Tyson JF; West TS
    Talanta; 1980 Apr; 27(4):335-42. PubMed ID: 18962680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LIGA-electrodes in voltammetric and spectroelectrochemical studies.
    Dunsch L; Neudeck A; Rapta P
    Fresenius J Anal Chem; 2000 Jun; 367(4):314-9. PubMed ID: 11225851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotating cell for in situ Raman spectroelectrochemical studies of photosensitive redox systems.
    Kavan L; Janda P; Krause M; Ziegs F; Dunsch L
    Anal Chem; 2009 Mar; 81(5):2017-21. PubMed ID: 19192964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein conformational changes in tetraheme cytochromes detected by FTIR spectroelectrochemistry: Desulfovibrio desulfuricans Norway 4 and Desulfovibrio gigas cytochromes c3.
    Schlereth DD; Fernández VM; Mäntele W
    Biochemistry; 1993 Sep; 32(35):9199-208. PubMed ID: 8396427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplex Infrared Spectroscopy Imaging for Monitoring Spatially Resolved Redox Chemistry.
    Macedo LJA; Crespilho FN
    Anal Chem; 2018 Feb; 90(3):1487-1491. PubMed ID: 29359936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman spectroscopy and in situ Raman spectroelectrochemistry of isotopically engineered graphene systems.
    Frank O; Dresselhaus MS; Kalbac M
    Acc Chem Res; 2015 Jan; 48(1):111-8. PubMed ID: 25569178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroelectrochemical study of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F in solution and immobilized on biocompatible gold surfaces.
    Millo D; Pandelia ME; Utesch T; Wisitruangsakul N; Mroginski MA; Lubitz W; Hildebrandt P; Zebger I
    J Phys Chem B; 2009 Nov; 113(46):15344-51. PubMed ID: 19845323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IR spectroelectrochemical cyclic voltabsorptometry and derivative cyclic voltabsorptometry.
    Jin BK; Li L; Huang JL; Zhang SY; Tian YP; Yang JX
    Anal Chem; 2009 Jun; 81(11):4476-81. PubMed ID: 19402619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast 2D IR vibrational echo spectroscopy.
    Zheng J; Kwak K; Fayer MD
    Acc Chem Res; 2007 Jan; 40(1):75-83. PubMed ID: 17226947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Determination of pH at Nanostructured Carbon Electrodes Using IR Spectroscopy.
    Bamgbelu L; Holt KB
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31817326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A combination of in situ ESR and in situ NMR spectroelectrochemistry for mechanistic studies of electrode reactions: the case of p-benzoquinone.
    Klod S; Dunsch L
    Magn Reson Chem; 2011 Nov; 49(11):725-9. PubMed ID: 21972011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Step-scan IR spectroelectrochemistry with ultramicroelectrodes: nonsurface enhanced detection of near femtomole quantities using synchrotron radiation.
    Rosendahl SM; Borondics F; May TE; Burgess IJ
    Anal Chem; 2013 Sep; 85(18):8722-7. PubMed ID: 23930773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ECD spectroelectrochemistry: A review.
    Karoń K; Łapkowski M; Dobrowolski JC
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 250():119349. PubMed ID: 33429130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optically Transparent Thin-Film Electrode Chip for Spectroelectrochemical Sensing.
    Branch SD; Lines AM; Lynch J; Bello JM; Heineman WR; Bryan SA
    Anal Chem; 2017 Jul; 89(14):7324-7332. PubMed ID: 28605581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.