These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 18965624)

  • 1. Determination of chlorinated hydrocarbons introduced into air/acetylene flames by Fourier transform infrared emission spectroscopy.
    Koebele AR; Tilotta DC
    Talanta; 1993 Feb; 40(2):247-54. PubMed ID: 18965624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trace species detection in the near infrared using Fourier transform broadband cavity enhanced absorption spectroscopy: initial studies on potential breath analytes.
    Denzer W; Hancock G; Islam M; Langley CE; Peverall R; Ritchie GA; Taylor D
    Analyst; 2011 Feb; 136(4):801-6. PubMed ID: 21152628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopy in separated flames-IV: application of the nitrogen-separated air-acetylene flame in flame-emission and atomic-fluorescence spectroscopy.
    Hobbs RS; Kirkbright GF; Sargent M; West TS
    Talanta; 1968 Oct; 15(10):997-1007. PubMed ID: 18960398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The application of separated flames in analytical flame spectroscopy.
    Kirkbright GF; West TS
    Appl Opt; 1968 Jul; 7(7):1305-11. PubMed ID: 20068791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel method for identification and quantification of methanol and ethanol in alcoholic beverages by gas chromatography-Fourier transform infrared spectroscopy and horizontal attenuated total reflectance-Fourier transform infrared spectroscopy.
    Sharma K; Sharma SP; Lahiri SC
    J AOAC Int; 2009; 92(2):518-26. PubMed ID: 19485212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of a transportable Fourier transform infrared (FTIR) spectrometer for the direct measurement of solvents in breath and ambient air--I: Methanol.
    Franzblau A; Levine SP; Burgess LA; Qu QS; Schreck RM; D'Arcy JB
    Am Ind Hyg Assoc J; 1992 Apr; 53(4):221-7. PubMed ID: 1529913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopy in separated flames-V The argon- or nitrogen-sheathed nitrous oxide-acetylene flame in flame emission spectroscopy.
    Kirkbright GF; Sargent M; West TS
    Talanta; 1969 Feb; 16(2):245-53. PubMed ID: 18960492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopy in separated flames-I. The use of the separated air-acetylene flame in thermal emission spectroscopy.
    Kirkbright GF; Semb A; West TS
    Talanta; 1967 Sep; 14(9):1011-9. PubMed ID: 18960197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopy in separated flames--VII: Determination of bismuth by atomic-fluorescence spectroscopy in a separated air-acetylene flame with electronically modulated electrodeless discharge tube sources.
    Hobbs RS; Kirkbright GF; West TS
    Talanta; 1971 Sep; 18(9):859-64. PubMed ID: 18960956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superresolution of Fourier transform spectroscopy data by the maximum entropy method.
    Kawata S; Minami K; Minami S
    Appl Opt; 1983 Nov; 22(22):3593-8. PubMed ID: 18200238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fourier transform atomic absorption flame spectrometry with continuum source excitation.
    Glick MR; Jones BT; Smith BW; Winefordner JD
    Anal Chem; 1989 Aug; 61(15):1694-7. PubMed ID: 2774197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Jupiter's atmospheric composition from the Cassini thermal infrared spectroscopy experiment.
    Kunde VG; Flasar FM; Jennings DE; Bézard B; Strobel DF; Conrath BJ; Nixon CA; Bjoraker GL; Romani PN; Achterberg RK; Simon-Miller AA; Irwin P; Brasunas JC; Pearl JC; Smith MD; Orton GS; Gierasch PJ; Spilker LJ; Carlson RC; Mamoutkine AA; Calcutt SB; Read PL; Taylor FW; Fouchet T; Parrish P; Barucci A; Courtin R; Coustenis A; Gautier D; Lellouch E; Marten A; Prangé R; Biraud Y; Ferrari C; Owen TC; Abbas MM; Samuelson RE; Raulin F; Ade P; Césarsky CJ; Grossman KU; Coradini A
    Science; 2004 Sep; 305(5690):1582-6. PubMed ID: 15319491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylene measurement in flames by chirp-based quantum cascade laser spectrometry.
    Quine ZR; McNesby KL
    Appl Opt; 2009 Jun; 48(16):3075-83. PubMed ID: 19488121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Determination of chloroform and carbon tetrachloride in residential air by capillary gas chromatography].
    Kang L; Liu G; Chen W; Mao L
    Wei Sheng Yan Jiu; 2011 Mar; 40(2):208-10. PubMed ID: 21560312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and performance of a direct-reading, multichannel spectrometer for the determination of chlorinated purgeable organic compounds by flame infrared-emission spectrometry.
    Kubala SW; Tilotta DC; Busch MA; Busch KW
    Talanta; 1991 Jun; 38(6):589-602. PubMed ID: 18965190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking hazardous air pollutants from a refinery fire by applying on-line and off-line air monitoring and back trajectory modeling.
    Shie RH; Chan CC
    J Hazard Mater; 2013 Oct; 261():72-82. PubMed ID: 23912073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. spectroscopy in separated flames-VI The argon or nitrogen-sheathed nitrous oxide-acetylene flame in atomic-absorption spectroscopy.
    Kirkbright GF; Sargent M; West TS
    Talanta; 1969 Nov; 16(11):1467-75. PubMed ID: 18960659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time fourier transform-infrared analysis of carbon monoxide and nitric oxide in sidestream cigarette smoke.
    Thompson BT; Mizaikoff B
    Appl Spectrosc; 2006 Mar; 60(3):272-8. PubMed ID: 16608570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative determination of ethanol in heated plumes by passive Fourier transform infrared remote sensing measurements.
    Sulub Y; Small GW
    Analyst; 2007 Apr; 132(4):330-7. PubMed ID: 17554412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network.
    Grelet C; Bastin C; Gelé M; Davière JB; Johan M; Werner A; Reding R; Fernandez Pierna JA; Colinet FG; Dardenne P; Gengler N; Soyeurt H; Dehareng F
    J Dairy Sci; 2016 Jun; 99(6):4816-4825. PubMed ID: 27016835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.