These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 18966243)
1. Current theories in the calculation of activity coefficients-II. Specific interaction theories applied to some equilibria studies in solution chemistry. Elizalde MP; Aparicio JL Talanta; 1995 Mar; 42(3):395-400. PubMed ID: 18966243 [TBL] [Abstract][Full Text] [Related]
2. An Equilibrium Model for the Calculation of Activity and Osmotic Coefficients in Aqueous Solutions. Goldberg RN J Res Natl Bur Stand (1977); 1984; 89(3):251-263. PubMed ID: 34566127 [TBL] [Abstract][Full Text] [Related]
3. SPECA: a program for the calculation of thermodynamic equilibrium constants from spectrophotometric data. Cazallas R; Citores MJ; Etxebarria N; Fernández LA; Madariaga JM Talanta; 1994 Oct; 41(10):1637-44. PubMed ID: 18966114 [TBL] [Abstract][Full Text] [Related]
4. Ionic medium effects on equilibrium constants Part II. Binary systems comprising some bivalent cations and monocarboxylates in aqueous solution. Pezza L; Molina M; Melios CB; de Moraes M; Tognolli JO Talanta; 1996 Oct; 43(10):1697-704. PubMed ID: 18966654 [TBL] [Abstract][Full Text] [Related]
5. Modeling the acid-base properties of glutathione in different ionic media, with particular reference to natural waters and biological fluids. Cigala RM; Crea F; De Stefano C; Lando G; Milea D; Sammartano S Amino Acids; 2012 Aug; 43(2):629-48. PubMed ID: 21997535 [TBL] [Abstract][Full Text] [Related]
6. Extrapolation of molar equilibrium constants to zero ionic strength and parameters dependent on it. Copper(II), nickel(II), hydrogen(I) complexes with glycinate ion and calcium(II), hydrogen(I) complexes with nitrilotriacetate ion. Anderegg G; Kholeif S Talanta; 1995 Aug; 42(8):1067-79. PubMed ID: 18966330 [TBL] [Abstract][Full Text] [Related]
7. Ionic strength dependence of formation constants-X: proton activity coefficients at various temperatures and ionic strengths and their use in the study of complex equilibria. Capone S; De Robertis A; De Stefano C; Sammartano S; Scarcella R Talanta; 1987 Jun; 34(6):593-8. PubMed ID: 18964368 [TBL] [Abstract][Full Text] [Related]
8. Heavy metal removal by clinoptilolite. An equilibrium study in multi-component systems. Petrus R; Warchoł JK Water Res; 2005 Mar; 39(5):819-30. PubMed ID: 15743627 [TBL] [Abstract][Full Text] [Related]
9. The acidic constants of 2-hydroxybenzohydroxamic acid in NaClO4 solutions at 25 degrees C. Ciavatta L; De Tommaso G; Iuliano M Ann Chim; 2004 Apr; 94(4):295-302. PubMed ID: 15242094 [TBL] [Abstract][Full Text] [Related]
10. Diffusion coefficients and complex equilibria in solution-IV Experimental determination and manipulation of diffusion data. Crow DR Talanta; 1984 Jun; 31(6):421-9. PubMed ID: 18963623 [TBL] [Abstract][Full Text] [Related]
11. Acid-base equilibria of phthalic acid in saline media: ion association from Pitzer equations. Rey-Castro C; Castro-Varela R; Herrero R; Sastre de Vicente ME Talanta; 2003 May; 60(1):93-101. PubMed ID: 18969029 [TBL] [Abstract][Full Text] [Related]
12. The electrochemical potential and ionic activity coefficients. A possible correction for Debye-Hückel and Maxwell-Boltzmann equations for dilute electrolyte equilibria. van der Weg PB J Colloid Interface Sci; 2009 Nov; 339(2):542-4. PubMed ID: 19656523 [TBL] [Abstract][Full Text] [Related]
13. Analytical theories of transport in concentrated electrolyte solutions from the MSA. Dufrêche JF; Bernard O; Durand-Vidal S; Turq P J Phys Chem B; 2005 May; 109(20):9873-84. PubMed ID: 16852194 [TBL] [Abstract][Full Text] [Related]
14. Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part I: Acid-base equilibria and pH buffers. Persat A; Chambers RD; Santiago JG Lab Chip; 2009 Sep; 9(17):2437-53. PubMed ID: 19680570 [TBL] [Abstract][Full Text] [Related]
15. Modeling solubility, acid-base properties and activity coefficients of amoxicillin, ampicillin and (+)6-aminopenicillanic acid, in NaCl(aq) at different ionic strengths and temperatures. Crea F; Cucinotta D; De Stefano C; Milea D; Sammartano S; Vianelli G Eur J Pharm Sci; 2012 Nov; 47(4):661-77. PubMed ID: 22903046 [TBL] [Abstract][Full Text] [Related]
16. Extended traceability of pH: an evaluation of the role of Pitzer's equations. Meinrath G Anal Bioanal Chem; 2002 Nov; 374(5):796-805. PubMed ID: 12434233 [TBL] [Abstract][Full Text] [Related]
17. Interaction of 5,7-dichloro-2-methyl-8-hydroxyquinoline with ionic micelles. Beltrán JL; Prat MD; Codony R Talanta; 1995 Dec; 42(12):1989-97. PubMed ID: 18966442 [TBL] [Abstract][Full Text] [Related]
18. Modeling ATP protonation and activity coefficients in NaClaq and KClaq by SIT and Pitzer equations. De Stefano C; Milea D; Pettignano A; Sammartano S Biophys Chem; 2006 May; 121(2):121-30. PubMed ID: 16488529 [TBL] [Abstract][Full Text] [Related]
19. Diffusion coefficients and complex equilibria in solution-III Graphical evaluation of formation constants from diffusion coefficients. Crow DR Talanta; 1983 Sep; 30(9):659-64. PubMed ID: 18963440 [TBL] [Abstract][Full Text] [Related]
20. The investigation of complex formation equilibria at constant ionic strength. Anderegg G Talanta; 1993 Feb; 40(2):243-6. PubMed ID: 18965623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]