These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 18966718)

  • 21. Kinetic speciation of Co(II), Ni(II), Cu(II), and Zn(II) in model solutions and freshwaters: lability and the d electron configuration.
    Sekaly AL; Murimboh J; Hassan NM; Mandal R; Younes ME; Chakrabarti CL; Back MH; Grégoire DC
    Environ Sci Technol; 2003 Jan; 37(1):68-74. PubMed ID: 12542292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellulose based macromolecular chelator having pyrocatechol as an anchored ligand: synthesis and applications as metal extractant prior to their determination by flame atomic absorption spectrometry.
    Gurnani V; Singh AK; Venkataramani B
    Talanta; 2003 Dec; 61(6):889-903. PubMed ID: 18969255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 8-Hydroxyquinoline anchored to silica gel via new moderate size linker: synthesis and applications as a metal ion collector for their flame atomic absorption spectrometric determination.
    Goswami A; Singh AK; Venkataramani B
    Talanta; 2003 Aug; 60(6):1141-54. PubMed ID: 18969140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preconcentration of Pb(II), Cr(III), Cu(II), Ni(II) and Cd(II) ions in environmental samples by membrane filtration prior to their flame atomic absorption spectrometric determinations.
    Divrikli U; Kartal AA; Soylak M; Elci L
    J Hazard Mater; 2007 Jul; 145(3):459-64. PubMed ID: 17175100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solid-phase extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) ions from environmental samples by flame atomic absorption spectrometry (FAAS).
    Duran C; Gundogdu A; Bulut VN; Soylak M; Elci L; Sentürk HB; Tüfekci M
    J Hazard Mater; 2007 Jul; 146(1-2):347-55. PubMed ID: 17223260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of heavy metal pollution in eastern Aegean Sea coastal waters by using Cystoseira barbata, Patella caerulea, and Liza aurata as biological indicators.
    Aydın-Önen S; Öztürk M
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):7310-7334. PubMed ID: 28105592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The acidobasic and complexation properties of humic acids Study of complexation of Czech humic acids with metal ions.
    Lubal P; Siroký D; Fetsch D; Havel J
    Talanta; 1998 Oct; 47(2):401-12. PubMed ID: 18967341
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of humic acid on Cd(II), Cu(II), and Pb(II) uptake by freshwater algae: kinetic and cell wall speciation considerations.
    Lamelas C; Pinheiro JP; Slaveykova VI
    Environ Sci Technol; 2009 Feb; 43(3):730-5. PubMed ID: 19245009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new chelating sorbent for metal ion extraction under high saline conditions.
    Prabhakaran D; Subramanian MS
    Talanta; 2003 May; 59(6):1227-36. PubMed ID: 18969013
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extraction and exchange behavior of metal species in therapeutically applied peat.
    Rosa AH; Rocha JC; Burba P
    Talanta; 2002 Nov; 58(5):969-78. PubMed ID: 18968830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis, characterization and applications of pyrocatechol modified amberlite XAD-2 resin for preconcentration and determination of metal ions in water samples by flame atomic absorption spectrometry (FAAS).
    Tewari PK; Singh AK
    Talanta; 2001 Jan; 53(4):823-33. PubMed ID: 18968172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane filtration studies of aquatic humic substances and their metal species: a concise overview. Part 2. Evaluation of conditional stability constants by using ultrafiltration.
    Nifant'eva TI; Shkinev VM; Spivakov BY; Burba P
    Talanta; 1999 Feb; 48(2):257-67. PubMed ID: 18967463
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 4-{[(2-Hydroxyphenyl)imino]methyl}-1,2-benzenediol (HIMB) anchored Amberlite XAD-16: Preparation and applications as metal extractants.
    Venkatesh G; Singh AK
    Talanta; 2007 Jan; 71(1):282-7. PubMed ID: 19071301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pre-concentration and separation of heavy metal ions by chemically modified waste paper gel.
    Adhikari CR; Parajuli D; Inoue K; Ohto K; Kawakita H
    Chemosphere; 2008 May; 72(2):182-8. PubMed ID: 18355892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduction of mercury(II) by tropical river humic substances (Rio Negro)-Part II. Influence of structural features (molecular size, aromaticity, phenolic groups, organically bound sulfur).
    Rocha JC; Sargentini E; Zara LF; Rosa AH; Dos Santos A; Burba P
    Talanta; 2003 Dec; 61(5):699-707. PubMed ID: 18969234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Competitive complexation of trace metals with dissolved humic acid.
    Cao Y; Conklin M; Betterton E
    Environ Health Perspect; 1995 Feb; 103 Suppl 1(Suppl 1):29-32. PubMed ID: 7621794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduction of mercury(II) by tropical river humic substances (Rio Negro) - A possible process of the mercury cycle in Brazil.
    Rocha JC; Junior ES; Zara LF; Rosa AH; Dos Santos A; Burba P
    Talanta; 2000 Dec; 53(3):551-9. PubMed ID: 18968142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complexation of arsenate with humic substance in water extract of compost.
    Lin HT; Wang MC; Li GC
    Chemosphere; 2004 Sep; 56(11):1105-12. PubMed ID: 15276723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photo-transformation of pedogenic humic acid and consequences for Cd(II), Cu(II) and Pb(II) speciation and bioavailability to green microalga.
    Worms IA; Adenmatten D; Miéville P; Traber J; Slaveykova VI
    Chemosphere; 2015 Nov; 138():908-15. PubMed ID: 25563161
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of the competition of Cu(II) and Ni(II) on the kinetic and thermodynamic stabilities of Cr(III)-organic ligand complexes using competitive ligand exchange (EDTA).
    Cunha Gda C; Goveia D; Romão LP; de Oliveira LC
    J Environ Manage; 2015 May; 154():259-65. PubMed ID: 25745843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.