These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18967878)

  • 1. The predicting study for chromatographic retention index of saturated alcohols by MLR and ANN.
    Guo W; Lu Y; Zheng XM
    Talanta; 2000 Mar; 51(3):479-88. PubMed ID: 18967878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of ridge regression, partial least-squares, pairwise correlation, forward- and best subset selection methods for prediction of retention indices for aliphatic alcohols.
    Farkas O; Héberger K
    J Chem Inf Model; 2005; 45(2):339-46. PubMed ID: 15807497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-column prediction of gas-chromatographic retention indices of saturated esters.
    D'Archivio AA; Maggi MA; Ruggieri F
    J Chromatogr A; 2014 Aug; 1355():269-77. PubMed ID: 24939086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous modeling of the Kovats retention indices on OV-1 and SE-54 stationary phases using artificial neural networks.
    Fatemi MH
    J Chromatogr A; 2002 May; 955(2):273-80. PubMed ID: 12075931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Kovats retention indices of some aliphatic aldehydes and ketones on some stationary phases at different temperatures using artificial neural network.
    Konoz E; Fatemi MH; Faraji R
    J Chromatogr Sci; 2008; 46(5):406-12. PubMed ID: 18492350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The prediction for gas chromatographic retention indices of saturated esters on stationary phases of different polarity.
    Wang Y; Yao X; Zhang X; Zhang R; Liu M; Hu Z; Fan B
    Talanta; 2002 Jun; 57(4):641-52. PubMed ID: 18968665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-column prediction of gas-chromatographic retention of polybrominated diphenyl ethers.
    D'Archivio AA; Giannitto A; Maggi MA
    J Chromatogr A; 2013 Jul; 1298():118-31. PubMed ID: 23726355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The prediction for gas chromatographic retention index of disulfides on stationary phases of different polarity.
    Gao Y; Wang Y; Yao X; Zhang X; Liu M; Hu Z; Fan B
    Talanta; 2003 Feb; 59(2):229-37. PubMed ID: 18968903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-column prediction of gas-chromatographic retention of polychlorinated biphenyls by artificial neural networks.
    D'Archivio AA; Incani A; Ruggieri F
    J Chromatogr A; 2011 Dec; 1218(48):8679-90. PubMed ID: 22000780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Correlation analysis of structures and gas chromatographic retention indices of aliphatic alcohols].
    Qin Z; Feng C
    Se Pu; 2004 Jul; 22(4):452-5. PubMed ID: 15709433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention prediction modeling of ginsenosides on a polyvinyl alcohol-bonded stationary phase at subambient temperatures using multiple linear regression and artificial neural network.
    Quiming NS; Denola NL; Soliev AB; Saito Y; Jinno K
    Anal Sci; 2008 Jan; 24(1):139-48. PubMed ID: 18187863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSPR study of GC retention indices for saturated esters on seven stationary phases based on novel topological indices.
    Liu F; Liang Y; Cao C; Zhou N
    Talanta; 2007 Jun; 72(4):1307-15. PubMed ID: 19071762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial neural network modeling of Kováts retention indices for noncyclic and monocyclic terpenes.
    Jalali-Heravi M; Fatemi MH
    J Chromatogr A; 2001 Apr; 915(1-2):177-83. PubMed ID: 11358247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of computer-assisted methods for the modeling of the retention time of a variety of volatile organic compounds: a PCA-MLR-ANN approach.
    Jalali-Heravi M; Kyani A
    J Chem Inf Comput Sci; 2004; 44(4):1328-35. PubMed ID: 15272841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictions of chromatographic retention indices of alkylphenols with support vector machines and multiple linear regression.
    Fatemi MH; Baher E; Ghorbanzade'h M
    J Sep Sci; 2009 Dec; 32(23-24):4133-42. PubMed ID: 19937857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictions of retention factors for some organic nucleuphiles in complexation gas chromatography.
    Fatemi MH; Ghorbannezhad Z
    J Chromatogr Sci; 2011; 49(6):476-81. PubMed ID: 21682998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative structure-retention relationship modelling of esters on stationary phases of different polarity.
    Souza ES; Kuhnen CA; Junkes Bda S; Yunes RA; Heinzen VE
    J Mol Graph Model; 2009 Aug; 28(1):20-7. PubMed ID: 19359206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of artificial neural network and multiple linear regression in the optimization of formulation parameters of leuprolide acetate loaded liposomes.
    Arulsudar N; Subramanian N; Muthy RS
    J Pharm Pharm Sci; 2005 Aug; 8(2):243-58. PubMed ID: 16124936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of artificial neural networks for prediction of retention factors of triazine herbicides in reversed-phase liquid chromatography.
    Ruggieri F; D'Archivio AA; Carlucci G; Mazzeo P
    J Chromatogr A; 2005 May; 1076(1-2):163-9. PubMed ID: 15974083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retention modelling of polychlorinated biphenyls in comprehensive two-dimensional gas chromatography.
    D'Archivio AA; Incani A; Ruggieri F
    Anal Bioanal Chem; 2011 Jan; 399(2):903-13. PubMed ID: 20972553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.