These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Uptake of fructose by the sorbitol phosphotransferase of Escherichia coli K12. Jones-Mortimer MC; Kornberg HL J Gen Microbiol; 1976 Oct; 96(2):383-91. PubMed ID: 792388 [TBL] [Abstract][Full Text] [Related]
7. Regulation of carbohydrate uptake and adenylate cyclase activity mediated by the enzymes II of the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli. Saier MH; Feucht BU; Hofstadter LJ J Biol Chem; 1976 Feb; 251(3):883-92. PubMed ID: 765335 [TBL] [Abstract][Full Text] [Related]
8. Permease-specific mutations in Salmonella typhimurium and Escherichia coli that release the glycerol, maltose, melibiose, and lactose transport systems from regulation by the phosphoenolpyruvate:sugar phosphotransferase system. Saier MH; Straud H; Massman LS; Judice JJ; Newman MJ; Feucht BU J Bacteriol; 1978 Mar; 133(3):1358-67. PubMed ID: 346569 [TBL] [Abstract][Full Text] [Related]
9. Mechanisms of 'inducer exclusion' by glucose. Kornberg H; Watts PD; Brown K FEBS Lett; 1980 Aug; 117 Suppl():K28-36. PubMed ID: 6252047 [No Abstract] [Full Text] [Related]
10. Deletion mapping of the genes coding for HPr and enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium. Cordaro JC; Roseman S J Bacteriol; 1972 Oct; 112(1):17-29. PubMed ID: 4562394 [TBL] [Abstract][Full Text] [Related]
11. Genetics in the study of carbohydrate transport by bacteria. Sixth Griffith Memorial Lecture. Kornberg HL J Gen Microbiol; 1976 Sep; 96(1):1-16. PubMed ID: 10342 [No Abstract] [Full Text] [Related]
13. Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport. Simoni RD; Levinthal M; Kundig FD; Kundig W; Anderson B; Hartman PE; Roseman S Proc Natl Acad Sci U S A; 1967 Nov; 58(5):1963-70. PubMed ID: 4866983 [No Abstract] [Full Text] [Related]
15. Molecular interactions in the bacterial phosphoenolpyruvate-phosphotransferase system (PTS). Kundig W J Supramol Struct; 1974; 2(5-6):695-814. PubMed ID: 4376825 [No Abstract] [Full Text] [Related]
16. The phosphoenolpyruvate-dependent phosphotransferase system: a central feature of carbohydrate accumulation by enteric bacteria. Mitchell WJ Microbiol Sci; 1985 Nov; 2(11):330-4, 339. PubMed ID: 3939989 [TBL] [Abstract][Full Text] [Related]
17. Utilization and transport of hexoses by mutant strains of Salmonella typhimurium lacking enzyme I of the phosphoenolpyruvate-dependent phosphotransferase system. Saier MH; Young WS; Roseman S J Biol Chem; 1971 Sep; 246(18):5838-40. PubMed ID: 4938041 [No Abstract] [Full Text] [Related]
18. Carbohydrate transport and cyclic 3',5' adenosine monophosphate (cAMP) levels in a temperature sensitive phosphotransferase mutant of Escherichia coli. Dahl R; Morse HG; Morse ML Mol Gen Genet; 1974 Mar; 129(1):1-10. PubMed ID: 4365589 [No Abstract] [Full Text] [Related]
19. Genetic analysis of succinate utilization in enzyme I mutants of the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli. Alexander JK; Tyler B J Bacteriol; 1975 Oct; 124(1):252-61. PubMed ID: 170246 [TBL] [Abstract][Full Text] [Related]
20. Relationships between beta-galactoside transport system and phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli K12. Burd GI; Bol'shakova TN; Gershanovich VN Mol Biol; 1973; 7(3):252-6. PubMed ID: 4589445 [No Abstract] [Full Text] [Related] [Next] [New Search]