These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 18968203)
1. Determination of antimony content in natural water by graphite furnace atomic absorption spectrometry after collection as antimony(III)-pyrogallol complex on activated carbon. Kubota T; Kawakami A; Sagara T; Ookubo N; Okutani T Talanta; 2001 Mar; 53(6):1117-26. PubMed ID: 18968203 [TBL] [Abstract][Full Text] [Related]
2. Determination of arsenic content in natural water by graphite furnace atomic absorption spectrometry after collection as molybdoarsenate on activated carbon. Kubota T; Yamaguchi T; Okutani T Talanta; 1998 Aug; 46(6):1311-9. PubMed ID: 18967259 [TBL] [Abstract][Full Text] [Related]
3. Selective separation and differential determination of antimony(III) and antimony(V) by solvent extraction with N-benzoyl-N-phenylhydroxylamine and graphite-furnace atomic-absorption spectrometry using a matrix-modification technique. Han-Wen S; Xiao-Quan S; Zhe-Ming N Talanta; 1982 Jul; 29(7):589-93. PubMed ID: 18963190 [TBL] [Abstract][Full Text] [Related]
4. Determination of Trace Antimony (III) in Water Samples with Single Drop Microextraction Using BPHA-[C Huang X; Guan M; Lu Z; Hang Y Int J Anal Chem; 2018; 2018():8045324. PubMed ID: 30154850 [TBL] [Abstract][Full Text] [Related]
5. [Determination of antimony from environmental air in the working area using flameless atomic absorption with a graphite furnace]. Carelli G; Rimatori V; Marsili R Ann Ist Super Sanita; 1977; 13(1-2):307-14. PubMed ID: 603128 [TBL] [Abstract][Full Text] [Related]
6. Use of 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel for automated preconcentration and selective determination of antimony(III) by flow-injection electrothermal atomic absorption spectrometry. Bosch Ojeda C; Sánchez Rojas F; Cano Pavón JM; Terrer Martín L Anal Bioanal Chem; 2005 May; 382(2):513-8. PubMed ID: 15940456 [TBL] [Abstract][Full Text] [Related]
7. Solid phase microextraction method using a novel polystyrene oleic acid imidazole polymer in micropipette tip of syringe system for speciation and determination of antimony in environmental and food samples. Panhwar AH; Tuzen M; Hazer B; Kazi TG Talanta; 2018 Jul; 184():115-121. PubMed ID: 29674021 [TBL] [Abstract][Full Text] [Related]
8. Use of cloud-point preconcentration for spectrophotometric determination of trace amounts of antimony in biological and environmental samples. El-Sharjawy AA; Amin AS Anal Biochem; 2016 Jan; 492():1-7. PubMed ID: 26278170 [TBL] [Abstract][Full Text] [Related]
9. Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop. Shamsipur M; Fattahi N; Assadi Y; Sadeghi M; Sharafi K Talanta; 2014 Dec; 130():26-32. PubMed ID: 25159375 [TBL] [Abstract][Full Text] [Related]
10. Determination of total selenium content in sediments and natural water by graphite furnace-atomic absorption spectroscopy after collection as a selenium(IV) complex on activated carbon. Kubota T; Suzuki K; Okutani T Talanta; 1995 Jul; 42(7):949-55. PubMed ID: 18966316 [TBL] [Abstract][Full Text] [Related]
11. Determination of antimony in natural waters by preconcentration on a chelating sorbent followed by instrumental neutron activation analysis. Zmijewska W Biol Trace Elem Res; 1994; 43-45():251-7. PubMed ID: 7710834 [TBL] [Abstract][Full Text] [Related]
12. Determination of antimony in ores and related materials by continuous hydride-generation atomic-absorption spectrometry after separation by xanthate extraction. Donaldson EM Talanta; 1990 Oct; 37(10):955-64. PubMed ID: 18965049 [TBL] [Abstract][Full Text] [Related]
13. Selective determination of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone by atomic-absorption spectrometry with a carbon-tube atomizer. Kamada T; Yamamoto Y Talanta; 1977 May; 24(5):330-3. PubMed ID: 18962096 [TBL] [Abstract][Full Text] [Related]
14. Pre-concentration of trace metals from sea-water for determination by graphite-furnace atomic-absorption spectrometry. Sturgeon RE; Berman SS; Desaulniers A; Russell DS Talanta; 1980 Feb; 27(2):85-94. PubMed ID: 18962623 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and characterization of a novel mesoporous silica functionalized with [1,5 bis(di-2-pyridyl)methylene thiocarbohydrazide] and its application as enrichment sorbent for determination of antimony by FI-HG-ETAAS. López Guerrero MM; Siles Cordero MT; Vereda Alonso E; García de Torres A; Cano Pavón JM Talanta; 2014 Nov; 129():1-8. PubMed ID: 25127557 [TBL] [Abstract][Full Text] [Related]
16. Hydride generation for the direct determination of trace and ultra-trace level of arsenic and antimony in waters using derivative atomic absorption spectrometry. Sun HW; Ha J; Sun JM; Zhang DQ; Yang LL Anal Bioanal Chem; 2002 Oct; 374(3):526-9. PubMed ID: 12373404 [TBL] [Abstract][Full Text] [Related]
17. Analytical application of nano-sized titanium dioxide for the determination of trace inorganic antimony in natural waters. Hagarová I; Matúš P; Bujdoš M; Kubová J Acta Chim Slov; 2012 Mar; 59(1):102-8. PubMed ID: 24061178 [TBL] [Abstract][Full Text] [Related]
18. Applicability of anodic-stripping voltammetry and graphite furnace atomic-absorption spectrometry to the determination of antimony in biological matrices: a comparative study. Costantini S; Giordano R; Rizzica M; Benedetti F Analyst; 1985 Nov; 110(11):1355-9. PubMed ID: 2867716 [No Abstract] [Full Text] [Related]
19. Determination of arsenic in ores, concentrates and related materials by graphite-furnace atomic-absorption spectrometry after separation by xanthate extraction. M Donaldson E Talanta; 1988 Jan; 35(1):47-53. PubMed ID: 18964463 [TBL] [Abstract][Full Text] [Related]
20. Speciation of Sb(III) and Sb(V) in meglumine antimoniate pharmaceutical formulations by PSA using carbon nanotube electrode. Santos VS; Santos Wde J; Kubota LT; Tarley CR J Pharm Biomed Anal; 2009 Sep; 50(2):151-7. PubMed ID: 19423263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]