These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 18968203)

  • 21. Use of carbon nanotubes and electrothermal atomic absorption spectrometry for the speciation of very low amounts of arsenic and antimony in waters.
    López-García I; Rivas RE; Hernández-Córdoba M
    Talanta; 2011 Oct; 86():52-7. PubMed ID: 22063510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective determination of antimony(III) and antimony(V) in liver tissue by microwave-assisted mineralization and hydride generation atomic absorption spectrometry.
    Rondón C; Burguera JL; Burguera M; Brunetto MR; Gallignani M; De Peña YP
    Anal Bioanal Chem; 1995 Sep; 353(2):133-6. PubMed ID: 15048527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of trace aluminum in biological and water samples by cloud point extraction preconcentration and graphite furnace atomic absorption spectrometry detection.
    Sang H; Liang P; Du D
    J Hazard Mater; 2008 Jun; 154(1-3):1127-32. PubMed ID: 18082326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Speciation of chromium in water samples with cloud point extraction separation and preconcentration and determination by graphite furnace atomic absorption spectrometry.
    Liang P; Sang H
    J Hazard Mater; 2008 Jun; 154(1-3):1115-9. PubMed ID: 18082323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination of Ultra-trace Rhodium in Water Samples by Graphite Furnace Atomic Absorption Spectrometry after Cloud Point Extraction Using 2-(5-Iodo-2-Pyridylazo)-5-Dimethylaminoaniline as a Chelating Agent.
    Han Q; Huo Y; Wu J; He Y; Yang X; Yang L
    Molecules; 2017 Mar; 22(4):. PubMed ID: 28338642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of trace nickel in water samples by cloud point extraction preconcentration coupled with graphite furnace atomic absorption spectrometry.
    Sun Z; Liang P; Ding Q; Cao J
    J Hazard Mater; 2006 Sep; 137(2):943-6. PubMed ID: 16704902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of antimony in concentrates, ores and non-ferrous materials by atomic-absorption spectrophotometry after iron-lanthanum collection, or by the iodide method after further xanthate extraction.
    Donaldson EM
    Talanta; 1979 Nov; 26(11):999-1010. PubMed ID: 18962563
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On-line electrochemical preconcentration and electrochemical hydride generation for determination of antimony by high-resolution continuum source atomic absorption spectrometry.
    Masac J; Machynak L; Lovic J; Beinrohr E; Cacho F
    Talanta; 2021 Feb; 223(Pt 2):121767. PubMed ID: 33298277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cloud point extraction and graphite furnace atomic absorption spectrometry determination of manganese(II) and iron(III) in water samples.
    Liang P; Sang H; Sun Z
    J Colloid Interface Sci; 2006 Dec; 304(2):486-90. PubMed ID: 17010364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of Antimony in Pharmaceutical Formulations and Beverages Using High-Resolution Continuum-Source Graphite Furnace Atomic Absorption Spectrometry.
    Mattiazzi P; Bohrer D; Viana C; do Nascimento PC; Veiga M; de Carvalho LM
    J AOAC Int; 2017 May; 100(3):737-743. PubMed ID: 28105980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On line automated system for the determination of Sb(V), Sb(III), thrimethyl antimony(v) and total antimony in soil employing multisyringe flow injection analysis coupled to HG-AFS.
    Silva Junior MM; Portugal LA; Serra AM; Ferrer L; Cerdà V; Ferreira SLC
    Talanta; 2017 Apr; 165():502-507. PubMed ID: 28153289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of gold in geological materials by carbon slurry sampling graphite furnace atomic absorption spectrometry.
    Dobrowolski R; Kuryło M; Otto M; Mróz A
    Talanta; 2012 Sep; 99():750-7. PubMed ID: 22967620
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of Trace Nickel in Water Samples by Graphite Furnace Atomic Absorption Spectrometry after Mixed Micelle-Mediated Cloud Point Extraction.
    Han Q; Huo Y; Yang L; Yang X; He Y; Wu J
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30309038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. H-point standard addition method applied to simultaneous kinetic determination of antimony(III) and antimony(V) by adsorptive linear sweep voltammetry.
    Zarei K; Atabati M; Karami M
    J Hazard Mater; 2010 Jul; 179(1-3):840-4. PubMed ID: 20395045
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Speciation of antimony(III) and antimony(V) by electrothermal atomic absorption spectrometry after ultrasound-assisted emulsification of solidified floating organic drop microextraction.
    Wen S; Zhu X
    Talanta; 2013 Oct; 115():814-8. PubMed ID: 24054667
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective determination of ultra trace amounts of gold by graphite furnace atomic absorption spectrometry after dispersive liquid-liquid microextraction.
    Shamsipur M; Ramezani M
    Talanta; 2008 Mar; 75(1):294-300. PubMed ID: 18371881
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Screening of antimony in PVC by solid sampling-graphite furnace atomic absorption spectrometry.
    Belarra MA; Belategui I; Lavilla I; Anzano JM; Castillo JR
    Talanta; 1998 Aug; 46(6):1265-72. PubMed ID: 18967252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of experimental parameters on the determination of antimony in seawater by atomic absorption spectrometry using a transversely heated graphite furnace with Zeeman-effect background correction.
    Cabon JY
    Anal Bioanal Chem; 2002 Dec; 374(7-8):1282-9. PubMed ID: 12474098
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Speciation of very low amounts of antimony in waters using magnetic core-modified silver nanoparticles and electrothermal atomic absorption spectrometry.
    López-García I; Rengevicova S; Muñoz-Sandoval MJ; Hernández-Córdoba M
    Talanta; 2017 Jan; 162():309-315. PubMed ID: 27837834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of antimony(III) and total antimony by single-drop microextraction combined with electrothermal atomic absorption spectrometry.
    Fan Z
    Anal Chim Acta; 2007 Mar; 585(2):300-4. PubMed ID: 17386678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.