These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 18968216)

  • 1. Investigation of adsorption of nanogram quantities of iron(II) tris-(1,10-phenanthrolinate) on glasses and silica by thermal lens spectrometry.
    Kononets MY; Proskurnin MA; Bendrysheva SN; Chernysh VV
    Talanta; 2001 Mar; 53(6):1221-7. PubMed ID: 18968216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal lens studies of the reaction of iron (II) with 1,10-phenanthroline at the nanogram level.
    Chernysh VV; Kononets MY; Proskurnin MA; Pakhomova SV; Komissarov VV; Zatsman AI
    Fresenius J Anal Chem; 2001 Mar; 369(6):535-42. PubMed ID: 11336340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mode-mismatched dual-beam differential thermal lensing with optical scheme design optimized using expert estimation for analytical measurements.
    Proskurnin MA; Volkov ME
    Appl Spectrosc; 2008 Apr; 62(4):439-49. PubMed ID: 18416904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of ionene adsorption on quartz surfaces by thermal-lens spectrometry.
    Nedosekin DA; Pirogov AV; Faubel W; Pyell U; Proskurnin MA
    Talanta; 2006 Feb; 68(5):1474-81. PubMed ID: 18970488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the reaction of copper(I) with 2,9-dimethyl-1,10-phenanthroline at trace level by thermal lensing.
    Proskurnin MA; Chernysh VV; Pakhomova SV; Kononets MY; Sheshenev AA
    Talanta; 2002 Jul; 57(5):831-9. PubMed ID: 18968686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of light-absorbing layers at inner capillary surface by cw excitation crossed-beam thermal-lens spectrometry.
    Nedosekin DA; Faubel W; Proskurnin MA; Pyell U
    Talanta; 2009 May; 78(3):682-90. PubMed ID: 19269412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The studies of the reaction of bismuth(III) with iodide at nanogram level by thermal lensing.
    Chernysh VV; Nesterova IV; Proskurnin MA
    Talanta; 2001 Jan; 53(5):1073-82. PubMed ID: 18968199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of dye adsorption phenomena at a silica glass/water interface with total internal reflection coupled with a thermal lens effect.
    Shimosaka T; Sugii T; Hobo T; Ross JB; Uchiyama K
    Anal Chem; 2000 Aug; 72(15):3532-8. PubMed ID: 10952539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of cationic cellulose derivative/anionic surfactant complexes onto solid surfaces. II. Hydrophobized silica surfaces.
    Terada E; Samoshina Y; Nylander T; Lindman B
    Langmuir; 2004 Aug; 20(16):6692-701. PubMed ID: 15274574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH effects on molecular adsorption and solvation of p-nitrophenol at silica/aqueous interfaces.
    Woods BL; Walker RA
    J Phys Chem A; 2013 Jul; 117(29):6224-33. PubMed ID: 23701438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption Isotherms of Cetylpyridinium Chloride with Iron III Salts at Air/Water and Silica/Water Interfaces.
    Aubourg R; Bee A; Cassaignon S; Monticone V; Treiner C
    J Colloid Interface Sci; 2000 Oct; 230(2):298-305. PubMed ID: 11017736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capture of Co(II) from its aqueous EDTA-chelate by DTPA-modified silica gel and chitosan.
    Repo E; Malinen L; Koivula R; Harjula R; Sillanpää M
    J Hazard Mater; 2011 Mar; 187(1-3):122-32. PubMed ID: 21247694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental studies on the adsorption of two surfactants on solid-aqueous interfaces: adsorption isotherms and kinetics.
    Gutig C; Grady BP; Striolo A
    Langmuir; 2008 May; 24(9):4806-16. PubMed ID: 18380511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and supramolecular structure of adsorbed fibrinogen and adsorption isotherms of fibrinogen at quartz surfaces.
    Nygren H; Stenberg M
    J Biomed Mater Res; 1988 Jan; 22(1):1-11. PubMed ID: 2830287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reuse of waste silica as adsorbent for metal removal by iron oxide modification.
    Unob F; Wongsiri B; Phaeon N; Puanngam M; Shiowatana J
    J Hazard Mater; 2007 Apr; 142(1-2):455-62. PubMed ID: 17008002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorption potential of rice husk for the removal of 2,4-dichlorophenol from aqueous solutions: kinetic and thermodynamic investigations.
    Akhtar M; Bhanger MI; Iqbal S; Hasany SM
    J Hazard Mater; 2006 Jan; 128(1):44-52. PubMed ID: 16126338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption.
    Kwon JS; Yun ST; Lee JH; Kim SO; Jo HY
    J Hazard Mater; 2010 Feb; 174(1-3):307-13. PubMed ID: 19828237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of chitosan adsorption on silica from aqueous solutions.
    Tiraferri A; Maroni P; Rodríguez DC; Borkovec M
    Langmuir; 2014 May; 30(17):4980-8. PubMed ID: 24725003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of atrazine on soils: model study.
    Kovaios ID; Paraskeva CA; Koutsoukos PG; Payatakes ACh
    J Colloid Interface Sci; 2006 Jul; 299(1):88-94. PubMed ID: 16556447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-synthesis surface-modified silicas as adsorbents for heavy metal ion contaminants Cd(II), Cu(II), Cr(III), and Sr(II) in aqueous solutions.
    Kothalawala N; Blitz JP; Gun'ko VM; Jaroniec M; Grabicka B; Semeniuc RF
    J Colloid Interface Sci; 2013 Feb; 392():57-64. PubMed ID: 23149108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.