BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 18968274)

  • 1. Chemical signatures of TNT-filled land mines.
    Jenkins TF; Leggett DC; Miyares PH; Walsh ME; Ranney TA; Cragin JH; George V
    Talanta; 2001 May; 54(3):501-13. PubMed ID: 18968274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector.
    Walsh ME
    Talanta; 2001 May; 54(3):427-38. PubMed ID: 18968268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification and aging of the post-blast residue of TNT landmines.
    Oxley JC; Smith JL; Resende E; Pearce E
    J Forensic Sci; 2003 Jul; 48(4):742-53. PubMed ID: 12877289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Escherichia coli bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene.
    Yagur-Kroll S; Lalush C; Rosen R; Bachar N; Moskovitz Y; Belkin S
    Appl Microbiol Biotechnol; 2014 Jan; 98(2):885-95. PubMed ID: 23615740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced detection of nitroaromatic explosive vapors combining solid-phase extraction-air sampling, supercritical fluid extraction, and large-volume injection-GC.
    Batlle R; Carlsson H; Tollbäck P; Colmsjö A; Crescenzi C
    Anal Chem; 2003 Jul; 75(13):3137-44. PubMed ID: 12964762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA
    J Environ Qual; 2009; 38(6):2285-94. PubMed ID: 19875785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field-deployable sniffer for 2,4-dinitrotoluene detection.
    Albert KJ; Myrick ML; Brown SB; James DL; Milanovich FP; Walt DR
    Environ Sci Technol; 2001 Aug; 35(15):3193-200. PubMed ID: 11506002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compound-specific nitrogen and carbon isotope analysis of nitroaromatic compounds in aqueous samples using solid-phase microextraction coupled to GC/IRMS.
    Berg M; Bolotin J; Hofstetter TB
    Anal Chem; 2007 Mar; 79(6):2386-93. PubMed ID: 17295450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Desorption of nitramine and nitroaromatic explosive residues from soils detonated under controlled conditions.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA; Jaramillo AM; Trainor TP
    Environ Toxicol Chem; 2011 Feb; 30(2):345-53. PubMed ID: 21038362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence detection and identification of tagging agents and impurities found in explosives.
    Sheaff CN; Eastwood D; Wai CM; Addleman RS
    Appl Spectrosc; 2008 Jul; 62(7):739-46. PubMed ID: 18935822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation and risk assessment modeling of As and other heavy metals contamination around five abandoned metal mines in Korea.
    Kim JY; Kim KW; Ahn JS; Ko I; Lee CH
    Environ Geochem Health; 2005 Apr; 27(2):193-203. PubMed ID: 16003587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exposure to nitroaromatic explosives and health effects during disposal of military waste.
    Letzel S; Göen T; Bader M; Angerer J; Kraus T
    Occup Environ Med; 2003 Jul; 60(7):483-8. PubMed ID: 12819281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene by an Escherichia coli bioreporter: performance enhancement by directed evolution.
    Yagur-Kroll S; Amiel E; Rosen R; Belkin S
    Appl Microbiol Biotechnol; 2015 Sep; 99(17):7177-88. PubMed ID: 25981994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation and detection of explosives on a microchip using micellar electrokinetic chromatography and indirect laser-induced fluorescence.
    Wallenborg SR; Bailey CG
    Anal Chem; 2000 Apr; 72(8):1872-8. PubMed ID: 10784156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paper-Based Probes with Visual Response to Vapors from Nitroaromatic Explosives: Polyfluorenes and Tertiary Amines.
    Aguado R; Santos ARMG; Vallejos S; Valente AJM
    Molecules; 2022 May; 27(9):. PubMed ID: 35566254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochar Amendment for Reducing Leachability of Nitro Explosives and Metals from Contaminated Soils and Mine Tailings.
    Oh SY; Yoon HS
    J Environ Qual; 2016 May; 45(3):993-1002. PubMed ID: 27136167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Percutaneous absorption of explosives and related compounds: an empirical model of bioavailability of organic nitro compounds from soil.
    Reifenrath WG; Kammen HO; Palmer WG; Major MM; Leach GJ
    Toxicol Appl Pharmacol; 2002 Jul; 182(2):160-8. PubMed ID: 12140179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Portable Biosensor for 2,4-Dinitrotoluene Vapors.
    Prante M; Ude C; Große M; Raddatz L; Krings U; John G; Belkin S; Scheper T
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30513956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Empirical determination of explosive vapor transport efficiencies.
    Mullen M; Katilie C; Collins GE; Giordano BC
    Analyst; 2021 Aug; 146(16):5124-5134. PubMed ID: 34269775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon nanowire arrays for the preconcentration and separation of trace explosives vapors.
    Giordano BC; Ratchford DC; Johnson KJ; Pehrsson PE
    J Chromatogr A; 2019 Jul; 1597():54-62. PubMed ID: 30929864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.