These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 18968744)
1. Evaluation of a GFP reporter gene construct for environmental arsenic detection. Roberto FF; Barnes JM; Bruhn DF Talanta; 2002 Aug; 58(1):181-8. PubMed ID: 18968744 [TBL] [Abstract][Full Text] [Related]
2. Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Stocker J; Balluch D; Gsell M; Harms H; Feliciano J; Daunert S; Malik KA; van der Meer JR Environ Sci Technol; 2003 Oct; 37(20):4743-50. PubMed ID: 14594387 [TBL] [Abstract][Full Text] [Related]
3. Development of a set of bacterial biosensors for simultaneously detecting arsenic and mercury in groundwater. Huang CW; Yang SH; Sun MW; Liao VH Environ Sci Pollut Res Int; 2015 Jul; 22(13):10206-13. PubMed ID: 25697554 [TBL] [Abstract][Full Text] [Related]
4. Design of a Whole-Cell Biosensor Based on Bacillus subtilis Spores and the Green Fluorescent Protein To Monitor Arsenic. Valenzuela-García LI; Alarcón-Herrera MT; Ayala-García VM; Barraza-Salas M; Salas-Pacheco JM; Díaz-Valles JF; Pedraza-Reyes M Microbiol Spectr; 2023 Aug; 11(4):e0043223. PubMed ID: 37284752 [TBL] [Abstract][Full Text] [Related]
5. Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors. Brutesco C; Prévéral S; Escoffier C; Descamps ECT; Prudent E; Cayron J; Dumas L; Ricquebourg M; Adryanczyk-Perrier G; de Groot A; Garcia D; Rodrigue A; Pignol D; Ginet N Environ Sci Pollut Res Int; 2017 Jan; 24(1):52-65. PubMed ID: 27234828 [TBL] [Abstract][Full Text] [Related]
6. Paralogous Regulators ArsR1 and ArsR2 of Pseudomonas putida KT2440 as a Basis for Arsenic Biosensor Development. Fernández M; Morel B; Ramos JL; Krell T Appl Environ Microbiol; 2016 Jul; 82(14):4133-4144. PubMed ID: 27208139 [TBL] [Abstract][Full Text] [Related]
7. Chemical-specific health consultation for chromated copper arsenate chemical mixture: port of Djibouti. Chou S; Colman J; Tylenda C; De Rosa C Toxicol Ind Health; 2007 May; 23(4):183-208. PubMed ID: 18429380 [TBL] [Abstract][Full Text] [Related]
8. A Sensitive Magnetic Arsenite-Specific Biosensor Hosted in Magnetotactic Bacteria. Dieudonné A; Prévéral S; Pignol D Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32385084 [TBL] [Abstract][Full Text] [Related]
9. Immobilization of fluorescent bacterial bioreporter for arsenic detection. Elcin E; Öktem HA J Environ Health Sci Eng; 2020 Jun; 18(1):137-148. PubMed ID: 32399227 [TBL] [Abstract][Full Text] [Related]
10. Functional characterization of Gram-negative bacteria from different genera as multiplex cadmium biosensors. Bereza-Malcolm L; Aracic S; Kannan R; Mann G; Franks AE Biosens Bioelectron; 2017 Aug; 94():380-387. PubMed ID: 28319906 [TBL] [Abstract][Full Text] [Related]
11. Green fluorescent protein as a molecular marker in microbiology. Rosochacki SJ; Matejczyk M Acta Microbiol Pol; 2002; 51(3):205-16. PubMed ID: 12588095 [TBL] [Abstract][Full Text] [Related]
12. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. Fan H; Su C; Wang Y; Yao J; Zhao K; Wang Y; Wang G J Appl Microbiol; 2008 Aug; 105(2):529-39. PubMed ID: 18397256 [TBL] [Abstract][Full Text] [Related]
13. Development of a whole-cell biosensor based on an ArsR-P Li P; Wang Y; Yuan X; Liu X; Liu C; Fu X; Sun D; Dang Y; Holmes DE Environ Sci Ecotechnol; 2021 Apr; 6():100092. PubMed ID: 36159180 [TBL] [Abstract][Full Text] [Related]
14. [Advance in the bioavailability monitoring of heavy metal based on microbial whole-cell sensor]. Hou QH; Ma AS; Zhuang XL; Zhuang GQ Huan Jing Ke Xue; 2013 Jan; 34(1):347-56. PubMed ID: 23487961 [TBL] [Abstract][Full Text] [Related]
15. Development of bacteria-based bioassays for arsenic detection in natural waters. Diesel E; Schreiber M; van der Meer JR Anal Bioanal Chem; 2009 Jun; 394(3):687-93. PubMed ID: 19377836 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Anderson CR; Cook GM Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729 [TBL] [Abstract][Full Text] [Related]
17. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Inskeep WP; Macur RE; Hamamura N; Warelow TP; Ward SA; Santini JM Environ Microbiol; 2007 Apr; 9(4):934-43. PubMed ID: 17359265 [TBL] [Abstract][Full Text] [Related]
18. Characterization of siderophore producing arsenic-resistant Staphylococcus sp. strain TA6 isolated from contaminated groundwater of Jorhat, Assam and its possible role in arsenic geocycle. Das S; Barooah M BMC Microbiol; 2018 Sep; 18(1):104. PubMed ID: 30180796 [TBL] [Abstract][Full Text] [Related]
19. Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors. Liao VH; Chien MT; Tseng YY; Ou KL Environ Pollut; 2006 Jul; 142(1):17-23. PubMed ID: 16298031 [TBL] [Abstract][Full Text] [Related]
20. Monitoring arsenic using genetically encoded biosensors in vitro: The role of evolved regulatory genes. Wang X; Zhu K; Chen D; Wang J; Wang X; Xu A; Wu L; Li L; Chen S Ecotoxicol Environ Saf; 2021 Jan; 207():111273. PubMed ID: 32916524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]