These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 18969209)

  • 1. Amperometric sensors based on tyrosinase-modified screen-printed arrays.
    Sapelnikova S; Dock E; Ruzgas T; Emnéus J
    Talanta; 2003 Nov; 61(4):473-83. PubMed ID: 18969209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of different mediator-modified screen-printed electrodes used in a flow system as amperometric sensors for NADH.
    Prieto-Simón B; Macanás J; Muñoz M; Fàbregas E
    Talanta; 2007 Mar; 71(5):2102-7. PubMed ID: 19071571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amperometric detection of catechol using tyrosinase modified electrodes enhanced by the layer-by-layer assembly of gold nanocubes and polyelectrolytes.
    Karim MN; Lee JE; Lee HJ
    Biosens Bioelectron; 2014 Nov; 61():147-51. PubMed ID: 24874658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amperometric biosensing of carbamate and organophosphate pesticides utilizing screen-printed tyrosinase-modified electrodes.
    de Albuquerque YD; Ferreira LF
    Anal Chim Acta; 2007 Jul; 596(2):210-21. PubMed ID: 17631099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for developing NADH detectors based on Meldola Blue and screen-printed electrodes: a comparative study.
    Vasilescu A; Noguer T; Andreescu S; Calas-Blanchard C; Bala C; Marty JL
    Talanta; 2003 Mar; 59(4):751-65. PubMed ID: 18968963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of the electrochemical detection of catechol by the use of a carbon nanotube based biosensor.
    Pérez López B; Merkoçi A
    Analyst; 2009 Jan; 134(1):60-4. PubMed ID: 19082175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and application of a flow cell for carbon-film based electrochemical enzyme biosensors.
    Barsan MM; Klincar J; Batic M; Brett CM
    Talanta; 2007 Mar; 71(5):1893-900. PubMed ID: 19071539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amperometric biosensor based on Prussian Blue-modified screen-printed electrode for lipase activity and triacylglycerol determination.
    Ben Rejeb I; Arduini F; Amine A; Gargouri M; Palleschi G
    Anal Chim Acta; 2007 Jun; 594(1):1-8. PubMed ID: 17560378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimisation and characterisation of biosensors based on polyaniline.
    Grennan K; Killard AJ; Hanson CJ; Cafolla AA; Smyth MR
    Talanta; 2006 Feb; 68(5):1591-600. PubMed ID: 18970503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a stable cholesterol biosensor based on multi-walled carbon nanotubes-gold nanoparticles composite covered with a layer of chitosan-room-temperature ionic liquid network.
    Gopalan AI; Lee KP; Ragupathy D
    Biosens Bioelectron; 2009 Mar; 24(7):2211-7. PubMed ID: 19167880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for the preparation of electrochemical composite biosensors based on gold nanoparticles.
    González-Cortés A; Yáñez-Sedeño P; Pingarrón JM
    Methods Mol Biol; 2009; 504():157-66. PubMed ID: 19159097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amperometric sensing of ascorbic acid using a disposable screen-printed electrode modified with electrografted o-aminophenol film.
    Nassef HM; Civit L; Fragoso A; O'Sullivan CK
    Analyst; 2008 Dec; 133(12):1736-41. PubMed ID: 19082077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reagentless amperometric formaldehyde-selective biosensors based on the recombinant yeast formaldehyde dehydrogenase.
    Demkiv O; Smutok O; Paryzhak S; Gayda G; Sultanov Y; Guschin D; Shkil H; Schuhmann W; Gonchar M
    Talanta; 2008 Aug; 76(4):837-46. PubMed ID: 18656667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic-complementary peptide-modified highly ordered pyrolytic graphite electrode for biosensor application.
    Yang H; Fung SY; Sun W; Mikkelsen S; Pritzker M; Chen P
    Biotechnol Prog; 2008; 24(4):964-71. PubMed ID: 19194905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme-modified nanoporous gold-based electrochemical biosensors.
    Qiu H; Xue L; Ji G; Zhou G; Huang X; Qu Y; Gao P
    Biosens Bioelectron; 2009 Jun; 24(10):3014-8. PubMed ID: 19345571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel amperometric biosensor for the detection of nitrophenol.
    Kafi AK; Chen A
    Talanta; 2009 Jun; 79(1):97-102. PubMed ID: 19376350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous detection of free and total prostate specific antigen on a screen-printed electrochemical dual sensor.
    Escamilla-Gómez V; Hernández-Santos D; González-García MB; Pingarrón-Carrazón JM; Costa-García A
    Biosens Bioelectron; 2009 Apr; 24(8):2678-83. PubMed ID: 19261459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real time monitoring of alcoholic fermentation with low-cost amperometric biosensors.
    Piermarini S; Volpe G; Esti M; Simonetti M; Palleschi G
    Food Chem; 2011 Jul; 127(2):749-54. PubMed ID: 23140730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superior long-term stability of a glucose biosensor based on inserted barrel plating gold electrodes.
    Hsu CT; Hsiao HC; Fang MY; Zen JM
    Biosens Bioelectron; 2009 Oct; 25(2):383-7. PubMed ID: 19729292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support.
    Védrine C; Fabiano S; Tran-Minh C
    Talanta; 2003 Mar; 59(3):535-44. PubMed ID: 18968938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.