These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 18969425)
1. An anthracene/porphyrin dimer fluorescence energy transfer sensing system for picric acid. Ni R; Tong RB; Guo CC; Shen GL; Yu RQ Talanta; 2004 May; 63(2):251-7. PubMed ID: 18969425 [TBL] [Abstract][Full Text] [Related]
2. An optical sensor for mercury ion based on the fluorescence quenching of tetra(p-dimethylaminophenyl)porphyrin. Yang Y; Jiang J; Shen G; Yu R Anal Chim Acta; 2009 Mar; 636(1):83-8. PubMed ID: 19231360 [TBL] [Abstract][Full Text] [Related]
3. An optical fiber chemical sensor for mercury ions based on a porphyrin dimer. Zhang XB; Guo CC; Li ZZ; Shen GL; Yu RQ Anal Chem; 2002 Feb; 74(4):821-5. PubMed ID: 11866062 [TBL] [Abstract][Full Text] [Related]
4. A selective optical chemical sensor for 2,6-dinitrophenol based on fluorescence quenching of a novel functional polymer. Wang X; Zeng H; Zhao L; Lin JM Talanta; 2006 Aug; 70(1):160-8. PubMed ID: 18970745 [TBL] [Abstract][Full Text] [Related]
5. Fluorescence-based sensor for Pb(II) using tetra-(3-bromo-4-hydroxyphenyl)porphyrin in liquid and immobilized medium. Bozkurt SS; Ayata S; Kaynak I Spectrochim Acta A Mol Biomol Spectrosc; 2009 May; 72(4):880-3. PubMed ID: 19157965 [TBL] [Abstract][Full Text] [Related]
6. Fluorescent sensor for imidazole derivatives based on monomer-dimer equilibrium of a zinc porphyrin complex in a polymeric film. Zhang Y; Yang R; Liu F; Li K Anal Chem; 2004 Dec; 76(24):7336-45. PubMed ID: 15595877 [TBL] [Abstract][Full Text] [Related]
7. Optical acetylcholine sensor based on free base porphyrin as a chromoionophore. Mroczkiewicz M; Pietrzak M; Górski Ł; Malinowska E Analyst; 2011 Sep; 136(18):3770-6. PubMed ID: 21776519 [TBL] [Abstract][Full Text] [Related]
8. Intramolecular excitation energy transfer in diarylurea-linked zinc porphyrin-anthracene dyads. Ezoe M; Minami T; Ogawa Y; Yagi S; Nakazumi H; Matsuyama T; Wada K; Horinaka H Photochem Photobiol Sci; 2005 Aug; 4(8):641-6. PubMed ID: 16052272 [TBL] [Abstract][Full Text] [Related]
9. A simple and reusable fluorescent sensor for heme proteins based on a conjugated polymer-doped electrospun nanofibrous membrane. Wang H; Peng Z; Long Y; Chen H; Yang Y; Li N; Liu F Talanta; 2012 May; 94():216-22. PubMed ID: 22608438 [TBL] [Abstract][Full Text] [Related]
10. A selective optical sensor for picric acid assay based on photopolymerization of 3-(N-methacryloyl) amino-9-ethylcarbazole. Hu YJ; Tan SZ; Shen GL; Yu RQ Anal Chim Acta; 2006 Jun; 570(2):170-5. PubMed ID: 17723396 [TBL] [Abstract][Full Text] [Related]
11. A reversible optode membrane for picric acid based on the fluorescence quenching of pyrene. Zeng HH; Wang KM; Liu CL; Yu RQ Talanta; 1993 Oct; 40(10):1569-73. PubMed ID: 18965822 [TBL] [Abstract][Full Text] [Related]
12. Photoinduced electron and energy transfer in dyads of porphyrin dimer and perylene tetracarboxylic diimide. Xu W; Chen H; Wang Y; Zhao C; Li X; Wang S; Weng Y Chemphyschem; 2008 Jul; 9(10):1409-15. PubMed ID: 18504796 [TBL] [Abstract][Full Text] [Related]
13. Singlet-singlet energy transfer in self-assembled systems of the cationic poly{9,9-bis[6-N,N,N-trimethylammonium)hexyl]fluorene-co-1,4-phenylene} with oppositely charged porphyrins. Pinto SM; Burrows HD; Pereira MM; Fonseca SM; Dias FB; Mallavia R; Tapia MJ J Phys Chem B; 2009 Dec; 113(50):16093-100. PubMed ID: 19925000 [TBL] [Abstract][Full Text] [Related]
14. Molecular energy and electron transfer assemblies made of self-organized lipid-porphyrin bilayer vesicles. Komatsu T; Moritake M; Tsuchida E Chemistry; 2003 Oct; 9(19):4626-33. PubMed ID: 14566867 [TBL] [Abstract][Full Text] [Related]
15. Fluorescence chemical sensor for determining trace levels of nitroaromatic explosives in water based on conjugated polymer with guanidinium side groups. Mi HY; Liu JL; Guan MM; Liu QW; Zhang ZQ; Feng GD Talanta; 2018 Sep; 187():314-320. PubMed ID: 29853053 [TBL] [Abstract][Full Text] [Related]
16. Singlet energy transfer in porphyrin-based donor-bridge-acceptor systems: interaction between bridge length and bridge energy. Pettersson K; Kyrychenko A; Rönnow E; Ljungdahl T; Mårtensson J; Albinsson B J Phys Chem A; 2006 Jan; 110(1):310-8. PubMed ID: 16392870 [TBL] [Abstract][Full Text] [Related]
17. Intramolecular and intermolecular energy transfers in donor-acceptor linear porphyrin arrays. Rhee H; Joo T; Aratani N; Osuka A; Cho S; Kim D J Chem Phys; 2006 Aug; 125(7):074902. PubMed ID: 16942375 [TBL] [Abstract][Full Text] [Related]
18. Highly sensitive sensing of zinc(II) by development and characterization of a PVC-based fluorescent chemical sensor. Aksuner N; Henden E; Yenigul B; Yilmaz I; Cukurovali A Spectrochim Acta A Mol Biomol Spectrosc; 2011 Mar; 78(3):1133-8. PubMed ID: 21257342 [TBL] [Abstract][Full Text] [Related]
19. A ratiometric fluorescent sensor for zinc ions based on covalently immobilized derivative of benzoxazole. Ma QJ; Zhang XB; Zhao XH; Gong YJ; Tang J; Shen GL; Yu RQ Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(4):687-93. PubMed ID: 19398369 [TBL] [Abstract][Full Text] [Related]
20. Anthracene based AIEgen for picric acid detection in real water samples. Gowri A; Vignesh R; Kathiravan A Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117144. PubMed ID: 31141777 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]