BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 18969672)

  • 1. Monitoring large scale wine fermentations with infrared spectroscopy.
    Urtubia A; Ricardo Pérez-Correa J; Meurens M; Agosin E
    Talanta; 2004 Oct; 64(3):778-84. PubMed ID: 18969672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct determination of organic acids in wine and wine-derived products by Fourier transform infrared (FT-IR) spectroscopy and chemometric techniques.
    Regmi U; Palma M; Barroso CG
    Anal Chim Acta; 2012 Jun; 732():137-44. PubMed ID: 22688045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemometrics and visible-near infrared spectroscopic monitoring of red wine fermentation in a pilot scale.
    Cozzolino D; Parker M; Dambergs RG; Herderich M; Gishen M
    Biotechnol Bioeng; 2006 Dec; 95(6):1101-7. PubMed ID: 16817241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of volatile profiles of fermenting grape must by headspace solid-phase dynamic extraction coupled with gas chromatography-mass spectrometry (HS-SPDE GC-MS): novel application to investigate problem fermentations.
    Malherbe S; Watts V; Nieuwoudt HH; Bauer FF; du Toit M
    J Agric Food Chem; 2009 Jun; 57(12):5161-6. PubMed ID: 19469561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentation kinetics and chemical characterisation of vino tostado, a traditional sweet wine from Galicia (NW Spain).
    Cortés S; Salgado JM; Rivas B; Torrado AM; Domínguez JM
    J Sci Food Agric; 2010 Jan; 90(1):121-31. PubMed ID: 20355022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the volatile compound production of fermentations made from musts with increasing grape content.
    Keyzers RA; Boss PK
    J Agric Food Chem; 2010 Jan; 58(2):1153-64. PubMed ID: 20020683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling kinetic expressions and metabolic networks for predicting wine fermentations.
    Pizarro F; Varela C; Martabit C; Bruno C; Pérez-Correa JR; Agosin E
    Biotechnol Bioeng; 2007 Dec; 98(5):986-98. PubMed ID: 17497743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid screening of the fermentation profiles of wine yeasts by Fourier transform infrared spectroscopy.
    Nieuwoudt HH; Pretorius IS; Bauer FF; Nel DG; Prior BA
    J Microbiol Methods; 2006 Nov; 67(2):248-56. PubMed ID: 16697064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of temperature variation on the visible and near infrared spectra of wine and the consequences on the partial least square calibrations developed to measure chemical composition.
    Cozzolino D; Liu L; Cynkar WU; Dambergs RG; Janik L; Colby CB; Gishen M
    Anal Chim Acta; 2007 Apr; 588(2):224-30. PubMed ID: 17386814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Managing high-density commercial scale wine fermentations.
    Chaney D; Rodriguez S; Fugelsang K; Thornton R
    J Appl Microbiol; 2006 Apr; 100(4):689-98. PubMed ID: 16553724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of laboratory and pilot-scale fermentations in winemaking conditions.
    Casalta E; Aguera E; Picou C; Rodriguez-Bencomo JJ; Salmon JM; Sablayrolles JM
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1665-73. PubMed ID: 20461506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of problematic wine fermentations using artificial neural networks.
    Román RC; Hernández OG; Urtubia UA
    Bioprocess Biosyst Eng; 2011 Nov; 34(9):1057-65. PubMed ID: 21643974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of wine yeast (Saccharomyces cerevisiae) aldehyde dehydrogenases to acetaldehyde stress during Icewine fermentation.
    Pigeau GM; Inglis DL
    J Appl Microbiol; 2007 Nov; 103(5):1576-86. PubMed ID: 17953569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-line fermentation monitoring by mid-infrared spectroscopy.
    Mazarevica G; Diewok J; Baena JR; Rosenberg E; Lendl B
    Appl Spectrosc; 2004 Jul; 58(7):804-10. PubMed ID: 15282045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of phenolic compounds during red winemaking using FT-MIR spectroscopy and PLS-regression.
    Fragoso S; Aceña L; Guasch J; Mestres M; Busto O
    J Agric Food Chem; 2011 Oct; 59(20):10795-802. PubMed ID: 21905733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of abnormal fermentations in wine process by multivariate statistics and pattern recognition techniques.
    Urtubia A; Hernández G; Roger JM
    J Biotechnol; 2012 Jun; 159(4):336-41. PubMed ID: 22001524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption.
    Beltran G; Esteve-Zarzoso B; Rozès N; Mas A; Guillamón JM
    J Agric Food Chem; 2005 Feb; 53(4):996-1002. PubMed ID: 15713011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains.
    Berthels NJ; Cordero Otero RR; Bauer FF; Thevelein JM; Pretorius IS
    FEMS Yeast Res; 2004 May; 4(7):683-9. PubMed ID: 15093771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring complex media fermentations with near-infrared spectroscopy: comparison of different variable selection methods.
    Ferreira AP; Alves TP; Menezes JC
    Biotechnol Bioeng; 2005 Aug; 91(4):474-81. PubMed ID: 15937882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of organic acids in wines by Fourier-transform infrared spectroscopy.
    Moreira JL; Santos L
    Anal Bioanal Chem; 2005 May; 382(2):421-5. PubMed ID: 15782339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.