These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 18969673)
1. Optimization of artificial neural network for retention modeling in high-performance liquid chromatography. Vasiljević T; Onjia A; Cokesa D; Lausević M Talanta; 2004 Oct; 64(3):785-90. PubMed ID: 18969673 [TBL] [Abstract][Full Text] [Related]
2. Quantitative structure-retention relationships of pesticides in reversed-phase high-performance liquid chromatography based on WHIM and GETAWAY molecular descriptors. D'Archivio AA; Maggi MA; Mazzeo P; Ruggieri F Anal Chim Acta; 2008 Nov; 628(2):162-72. PubMed ID: 18929004 [TBL] [Abstract][Full Text] [Related]
3. Multi-variable retention modelling in reversed-phase high-performance liquid chromatography based on the solvation method: a comparison between curvilinear and artificial neural network regression. D'Archivio AA; Maggi MA; Ruggieri F Anal Chim Acta; 2011 Mar; 690(1):35-46. PubMed ID: 21414434 [TBL] [Abstract][Full Text] [Related]
4. A novel evaluation method for extrapolated retention factor in determination of n-octanol/water partition coefficient of halogenated organic pollutants by reversed-phase high performance liquid chromatography. Han SY; Liang C; Qiao JQ; Lian HZ; Ge X; Chen HY Anal Chim Acta; 2012 Feb; 713():130-5. PubMed ID: 22200319 [TBL] [Abstract][Full Text] [Related]
6. Optimization of artificial neural networks used for retention modelling in ion chromatography. Srecnik G; Debeljak Z; Cerjan-Stefanović S; Novic M; Bolancab T J Chromatogr A; 2002 Oct; 973(1-2):47-59. PubMed ID: 12437163 [TBL] [Abstract][Full Text] [Related]
7. Ternary isocratic mobile phase optimization utilizing resolution Design Space based on retention time and peak width modeling. Kawabe T; Tomitsuka T; Kajiro T; Kishi N; Toyo'oka T J Chromatogr A; 2013 Jan; 1273():95-104. PubMed ID: 23267564 [TBL] [Abstract][Full Text] [Related]
8. Modelling of the effect of solute structure and mobile phase pH and composition on the retention of phenoxy acid herbicides in reversed-phase high-performance liquid chromatography. Aschi M; D'Archivio AA; Mazzeo P; Pierabella M; Ruggieri F Anal Chim Acta; 2008 Jun; 616(2):123-37. PubMed ID: 18482595 [TBL] [Abstract][Full Text] [Related]
9. Artificial neural network modelling of retention of pesticides in various octadecylsiloxane-bonded reversed-phase columns and water-acetonitrile mobile phase. D'Archivio AA; Maggi MA; Mazzeo P; Ruggieri F Anal Chim Acta; 2009 Jul; 646(1-2):47-61. PubMed ID: 19523555 [TBL] [Abstract][Full Text] [Related]
10. Comparison of artificial neural network and multiple linear regression in the optimization of formulation parameters of leuprolide acetate loaded liposomes. Arulsudar N; Subramanian N; Muthy RS J Pharm Pharm Sci; 2005 Aug; 8(2):243-58. PubMed ID: 16124936 [TBL] [Abstract][Full Text] [Related]
11. Prediction of supercritical fluid chromatographic retention factors at different percents of organic modifiers in mobile phase. Fatemi MH; Malekzadeh H; Shamseddin H J Sep Sci; 2009 Feb; 32(4):653-9. PubMed ID: 19160374 [TBL] [Abstract][Full Text] [Related]
12. Multiple linear regression and artificial neural network retention prediction models for ginsenosides on a polyamine-bonded stationary phase in hydrophilic interaction chromatography. Quiming NS; Denola NL; Saito Y; Jinno K J Sep Sci; 2008 May; 31(9):1550-63. PubMed ID: 18435511 [TBL] [Abstract][Full Text] [Related]
13. Artificial neural networks in analysis of indinavir and its degradation products retention. Jancić-Stojanović B; Ivanović D; Malenović A; Medenica M Talanta; 2009 Apr; 78(1):107-12. PubMed ID: 19174211 [TBL] [Abstract][Full Text] [Related]
14. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors. D'Archivio AA; Ruggieri F; Mazzeo P; Tettamanti E Anal Chim Acta; 2007 Jun; 593(2):140-51. PubMed ID: 17543600 [TBL] [Abstract][Full Text] [Related]
15. Quantitative structure-retention relationships of pesticides in reversed-phase high-performance liquid chromatography. Aschi M; D'Archivio AA; Maggi MA; Mazzeo P; Ruggieri F Anal Chim Acta; 2007 Jan; 582(2):235-42. PubMed ID: 17386498 [TBL] [Abstract][Full Text] [Related]
16. Optimisation of high performance liquid chromatography separation of neuroprotective peptides. Fractional experimental designs combined with artificial neural networks. Novotná K; Havlis J; Havel J J Chromatogr A; 2005 Nov; 1096(1-2):50-7. PubMed ID: 16301069 [TBL] [Abstract][Full Text] [Related]
17. Predicting retention in reverse-phase liquid chromatography at different mobile phase compositions and temperatures by using the solvation parameter model. Gotta J; Keunchkarian S; Castells C; Reta M J Sep Sci; 2012 Oct; 35(20):2699-709. PubMed ID: 22997100 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of separation in gradient elution ion chromatography by combining several retention models and objective functions. Bolanca T; Cerjan-Stefanović S; Lusa M; Ukić S; Rogosić M J Sep Sci; 2008 Mar; 31(4):705-13. PubMed ID: 18264988 [TBL] [Abstract][Full Text] [Related]
19. Combination of artificial neural network technique and linear free energy relationship parameters in the prediction of gradient retention times in liquid chromatography. Fatemi MH; Abraham MH; Poole CF J Chromatogr A; 2008 May; 1190(1-2):241-52. PubMed ID: 18395736 [TBL] [Abstract][Full Text] [Related]
20. Development of an inorganic cations retention model in ion chromatography by means of artificial neural networks with different two-phase training algorithms. Bolanca T; Cerjan-Stefanović S; Regelja M; Regelja H; Loncarić S J Chromatogr A; 2005 Aug; 1085(1):74-85. PubMed ID: 16106851 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]