BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 18969801)

  • 1. Optical biosensor for pharmaceuticals, antibiotics, hormones, endocrine disrupting chemicals and pesticides in water: Assay optimization process for estrone as example.
    Tschmelak J; Proll G; Gauglitz G
    Talanta; 2005 Jan; 65(2):313-23. PubMed ID: 18969801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-sensitive fully automated immunoassay for detection of propanil in aqueous samples: steps of progress toward sub-nanogram per liter detection.
    Tschmelak J; Proll G; Gauglitz G
    Anal Bioanal Chem; 2004 Aug; 379(7-8):1004-12. PubMed ID: 15241578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunosensor for estrone with an equal limit of detection as common analytical methods.
    Tschmelak J; Proll G; Gauglitz G
    Anal Bioanal Chem; 2004 Feb; 378(3):744-5. PubMed ID: 14647939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Verification of performance with the automated direct optical TIRF immunosensor (River Analyser) in single and multi-analyte assays with real water samples.
    Tschmelak J; Proll G; Gauglitz G
    Biosens Bioelectron; 2004 Nov; 20(4):743-52. PubMed ID: 15522589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Total internal reflectance fluorescence (TIRF) biosensor for environmental monitoring of testosterone with commercially available immunochemistry: antibody characterization, assay development and real sample measurements.
    Tschmelak J; Kumpf M; Käppel N; Proll G; Gauglitz G
    Talanta; 2006 Apr; 69(2):343-50. PubMed ID: 18970572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Water Analyser Computer Supported System (AWACSS) Part II: Intelligent, remote-controlled, cost-effective, on-line, water-monitoring measurement system.
    Tschmelak J; Proll G; Riedt J; Kaiser J; Kraemmer P; Bárzaga L; Wilkinson JS; Hua P; Hole JP; Nudd R; Jackson M; Abuknesha R; Barceló D; Rodriguez-Mozaz S; de Alda MJ; Sacher F; Stien J; Slobodník J; Oswald P; Kozmenko H; Korenková E; Tóthová L; Krascsenits Z; Gauglitz G
    Biosens Bioelectron; 2005 Feb; 20(8):1509-19. PubMed ID: 15626604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast and simultaneous monitoring of organic pollutants in a drinking water treatment plant by a multi-analyte biosensor followed by LC-MS validation.
    Rodriguez-Mozaz S; de Alda MJ; Barceló D
    Talanta; 2006 Apr; 69(2):377-84. PubMed ID: 18970577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of contaminant removal of reverse osmosis and advanced oxidation in full-scale operation by combining passive sampling with chemical analysis and bioanalytical tools.
    Escher BI; Lawrence M; Macova M; Mueller JF; Poussade Y; Robillot C; Roux A; Gernjak W
    Environ Sci Technol; 2011 Jun; 45(12):5387-94. PubMed ID: 21612211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures.
    Klecka G; Persoon C; Currie R
    Rev Environ Contam Toxicol; 2010; 207():1-93. PubMed ID: 20652664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada.
    Boyd GR; Reemtsma H; Grimm DA; Mitra S
    Sci Total Environ; 2003 Jul; 311(1-3):135-49. PubMed ID: 12826389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of an estradiol enzyme-linked immunosorbent assay kit, liquid chromatography-tandem mass spectrometry, and ultra performance liquid chromatography-quadrupole time of flight mass spectrometry for part-per-trillion analysis of estrogens in water samples.
    Farré M; Kuster M; Brix R; Rubio F; López de Alda MJ; Barceló D
    J Chromatogr A; 2007 Aug; 1160(1-2):166-75. PubMed ID: 17540393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved strategy for biosensor-based monitoring of water bodies with diverse organic carbon levels.
    Tschmelak J; Proll G; Gauglitz G
    Biosens Bioelectron; 2005 Dec; 21(6):979-83. PubMed ID: 16257667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shellfish and residual chemical contaminants: hazards, monitoring, and health risk assessment along French coasts.
    Guéguen M; Amiard JC; Arnich N; Badot PM; Claisse D; Guérin T; Vernoux JP
    Rev Environ Contam Toxicol; 2011; 213():55-111. PubMed ID: 21541848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A UV-transparent passive concentrator/spectrum deconvolution method for simultaneous detection of endocrine disrupting chemicals (EDCs) and related contaminants in natural waters.
    Kibbey TC; Chen L; Singhaputtangkul N; Sabatini DA
    Chemosphere; 2009 Aug; 76(9):1249-57. PubMed ID: 19539350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada.
    Lishman L; Smyth SA; Sarafin K; Kleywegt S; Toito J; Peart T; Lee B; Servos M; Beland M; Seto P
    Sci Total Environ; 2006 Aug; 367(2-3):544-58. PubMed ID: 16697441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully automated online solid phase extraction coupled directly to liquid chromatography-tandem mass spectrometry. Quantification of sulfonamide antibiotics, neutral and acidic pesticides at low concentrations in surface waters.
    Stoob K; Singer HP; Goetz CW; Ruff M; Mueller SR
    J Chromatogr A; 2005 Dec; 1097(1-2):138-47. PubMed ID: 16298193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography-negative chemical ionization-mass spectrometry.
    Zhao JL; Ying GG; Wang L; Yang JF; Yang XB; Yang LH; Li X
    Sci Total Environ; 2009 Jan; 407(2):962-74. PubMed ID: 19004474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TIRF-based biosensor for sensitive detection of progesterone in milk based on ultra-sensitive progesterone detection in water.
    Tschmelak J; Käppel N; Gauglitz G
    Anal Bioanal Chem; 2005 Aug; 382(8):1895-903. PubMed ID: 16025279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the presence of pesticide transformation products in water by using liquid chromatography-mass spectrometry with different mass analyzers.
    Hernández F; Ibáñez M; Pozo OJ; Sancho JV
    J Mass Spectrom; 2008 Feb; 43(2):173-84. PubMed ID: 17724783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.