These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 18969895)
1. Determination of cadmium and lead in table salt by sequential multi-element flame atomic absorption spectrometry. Amorim FA; Ferreira SL Talanta; 2005 Feb; 65(4):960-4. PubMed ID: 18969895 [TBL] [Abstract][Full Text] [Related]
2. An on-line pre-concentration system for determination of cadmium in drinking water using FAAS. dos Santos WN; Costa JL; Araujo RG; de Jesus DS; Costa AC J Hazard Mater; 2006 Oct; 137(3):1357-61. PubMed ID: 16959407 [TBL] [Abstract][Full Text] [Related]
3. Factorial design in the optimization of preconcentration procedure for lead determination by FAAS. Soylak M; Narin I; Bezerra Mde A; Ferreira SL Talanta; 2005 Feb; 65(4):895-9. PubMed ID: 18969885 [TBL] [Abstract][Full Text] [Related]
4. A pre-concentration procedure using coprecipitation for determination of lead and iron in several samples using flame atomic absorption spectrometry. Saracoglu S; Soylak M; Peker DS; Elci L; dos Santos WN; Lemos VA; Ferreira SL Anal Chim Acta; 2006 Aug; 575(1):133-7. PubMed ID: 17723582 [TBL] [Abstract][Full Text] [Related]
5. Solid phase extraction of lead and cadmium using solid sulfur as a new metal extractor prior to determination by flame atomic absorption spectrometry. Parham H; Pourreza N; Rahbar N J Hazard Mater; 2009 Apr; 163(2-3):588-92. PubMed ID: 18706760 [TBL] [Abstract][Full Text] [Related]
6. Flame atomic absorption spectrometric determination of cadmium(II) and lead(II) after their solid phase extraction as dibenzyldithiocarbamate chelates on Dowex Optipore V-493. Melek E; Tuzen M; Soylak M Anal Chim Acta; 2006 Sep; 578(2):213-9. PubMed ID: 17723714 [TBL] [Abstract][Full Text] [Related]
7. Preconcentration procedure using in situ solvent formation microextraction in the presence of ionic liquid for cadmium determination in saline samples by flame atomic absorption spectrometry. Mahpishanian S; Shemirani F Talanta; 2010 Jul; 82(2):471-6. PubMed ID: 20602922 [TBL] [Abstract][Full Text] [Related]
8. Simple hollow fiber renewal liquid membrane extraction method for pre-concentration of Cd(II) in environmental samples and detection by flame atomic absorption spectrometry. Carletto JS; Luciano RM; Bedendo GC; Carasek E Anal Chim Acta; 2009 Apr; 638(1):45-50. PubMed ID: 19298878 [TBL] [Abstract][Full Text] [Related]
9. Application of factorial design in optimization of preconcentration procedure for copper determination in soft drink by flame atomic absorption spectrometry. Castro MT; Baccan N Talanta; 2005 Mar; 65(5):1264-9. PubMed ID: 18969940 [TBL] [Abstract][Full Text] [Related]
10. Optimization of the preconcentration system of cadmium with 1(2-thiazolylazo)-p-cresol using a knotted reactor and flame atomic absorption spectrometric detection. Cerutti S; Ferreira SL; Gásquez JA; Olsina RA; Martinez LD J Hazard Mater; 2004 Aug; 112(3):279-83. PubMed ID: 15302449 [TBL] [Abstract][Full Text] [Related]
11. Pre-concentration procedure for determination of copper and zinc in food samples by sequential multi-element flame atomic absorption spectrometry. Ferreira HS; Santos AC; Portugal LA; Costa AC; Miró M; Ferreira SL Talanta; 2008 Oct; 77(1):73-6. PubMed ID: 18804601 [TBL] [Abstract][Full Text] [Related]
13. Development of a sequential injection dispersive liquid-liquid microextraction system for electrothermal atomic absorption spectrometry by using a hydrophobic sorbent material: determination of lead and cadmium in natural waters. Anthemidis AN; Ioannou KI Anal Chim Acta; 2010 May; 668(1):35-40. PubMed ID: 20457299 [TBL] [Abstract][Full Text] [Related]
14. Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations. Tuzen M; Soylak M J Hazard Mater; 2009 Mar; 162(2-3):724-9. PubMed ID: 18584957 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous flow injection preconcentration of lead and cadmium using cloud point extraction and determination by atomic absorption spectrometry. Silva EL; Roldan Pdos S J Hazard Mater; 2009 Jan; 161(1):142-7. PubMed ID: 18456398 [TBL] [Abstract][Full Text] [Related]
16. Development of a robust ionic liquid-based dispersive liquid-liquid microextraction against high concentration of salt for preconcentration of trace metals in saline aqueous samples: application to the determination of Pb and Cd. Yousefi SR; Shemirani F Anal Chim Acta; 2010 Jun; 669(1-2):25-31. PubMed ID: 20510899 [TBL] [Abstract][Full Text] [Related]
17. Rapid determination of lead in water samples by dispersive liquid-liquid microextraction coupled with electrothermal atomic absorption spectrometry. Naseri MT; Hosseini MR; Assadi Y; Kiani A Talanta; 2008 Mar; 75(1):56-62. PubMed ID: 18371847 [TBL] [Abstract][Full Text] [Related]
18. Preconcentration and determination of copper in tobacco leaves samples by using a minicolumn of sisal fiber (Agave sisalana) loaded with Alizarin fluorine blue by FAAS. Dias Fde S; Bonsucesso JS; Oliveira LC; dos Santos WN Talanta; 2012 Jan; 89():276-9. PubMed ID: 22284492 [TBL] [Abstract][Full Text] [Related]
19. A new method for indirect determination of iodide and thiosulfate in table salt and milk based on a combination of solid-phase extraction and flame atomic absorption spectrometry. Yalçinkaya O; Türker AR Acta Chim Slov; 2010 Jun; 57(2):491-7. PubMed ID: 24061750 [TBL] [Abstract][Full Text] [Related]
20. Automatic on-line pre-concentration system using a knotted reactor for the FAAS determination of lead in drinking water. Souza AS; Brandão GC; dos Santos WN; Lemos VA; Ganzarolli EM; Bruns RE; Ferreira SL J Hazard Mater; 2007 Mar; 141(3):540-5. PubMed ID: 16956723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]