BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18969994)

  • 1. Extraction of soil organic phosphorus.
    Turner BL; Cade-Menun BJ; Condron LM; Newman S
    Talanta; 2005 Apr; 66(2):294-306. PubMed ID: 18969994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overestimation of organic phosphorus in wetland soils by alkaline extraction and molybdate colorimetry.
    Turner BL; Newman S; Reddy KR
    Environ Sci Technol; 2006 May; 40(10):3349-54. PubMed ID: 16749704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of soil phosphorus in a fire-affected forest Cambisol by chemical extractions and (31)P-NMR spectroscopy analysis.
    Turrion MB; Lafuente F; Aroca MJ; López O; Mulas R; Ruipérez C
    Sci Total Environ; 2010 Jul; 408(16):3342-8. PubMed ID: 20452650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing phosphorus characterization in animal manures by solution phosphorus-31 nuclear magnetic resonance spectroscopy.
    Turner BL
    J Environ Qual; 2004; 33(2):757-66. PubMed ID: 15074830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution characterization of organic phosphorus in soil extracts using 2D 1H-31P NMR correlation spectroscopy.
    Vestergren J; Vincent AG; Jansson M; Persson P; Ilstedt U; Gröbner G; Giesler R; Schleucher J
    Environ Sci Technol; 2012 Apr; 46(7):3950-6. PubMed ID: 22394413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus cycling in wetland soils: the importance of phosphate diesters.
    Turner BL; Newman S
    J Environ Qual; 2005; 34(5):1921-9. PubMed ID: 16151243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing crop residue phosphorus speciation using chemical fractionation and solution 31P nuclear magnetic resonance spectroscopy.
    Noack SR; Smernik RJ; McBeath TM; Armstrong RD; McLaughlin MJ
    Talanta; 2014 Aug; 126():122-9. PubMed ID: 24881542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of a rhizosphere-based method with other one-step extraction methods for assessing the bioavailability of soil metals to wheat.
    Feng MH; Shan XQ; Zhang SZ; Wen B
    Chemosphere; 2005 May; 59(7):939-49. PubMed ID: 15823327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus movement and speciation in a sandy soil profile after long-term animal manure applications.
    Koopmans GF; Chardon WJ; McDowell RW
    J Environ Qual; 2007; 36(1):305-15. PubMed ID: 17215240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trihalomethane reactivity of water- and sodium hydroxide-extractable organic carbon fractions from peat soils.
    Chow AT; Guo F; Gao S; Breuer RS
    J Environ Qual; 2006; 35(1):114-21. PubMed ID: 16391282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids.
    Clemente R; Bernal MP
    Chemosphere; 2006 Aug; 64(8):1264-73. PubMed ID: 16481023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of phosphorus speciation and potential bioavailability in feed and feces of different dairy herds using 31p nuclear magnetic resonance spectroscopy.
    McDowell RW; Dou Z; Toth JD; Cade-Menun BJ; Kleinman PJ; Soder K; Saporito L
    J Environ Qual; 2008; 37(3):741-52. PubMed ID: 18453394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sediment phosphorus extractants for phosphorus-31 nuclear magnetic resonance analysis: a quantitative evaluation.
    Ahlgren J; De Brabandere H; Reitzel K; Rydin E; Gogoll A; Waldebäck M
    J Environ Qual; 2007; 36(3):892-8. PubMed ID: 17485721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorus speciation of sequential extracts of organic amendments using nuclear magnetic resonance and X-ray absorption near-edge structure spectroscopies.
    Ajiboye B; Akinremi OO; Hu Y; Flaten DN
    J Environ Qual; 2007; 36(6):1563-76. PubMed ID: 17940255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil and litter phosphorus-31 nuclear magnetic resonance spectroscopy: extractants, metals, and phosphorus relaxation times.
    Cade-Menun BJ; Liu CW; Nunlist R; McColl JG
    J Environ Qual; 2002; 31(2):457-65. PubMed ID: 11931434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fire impact on forest soils evaluated using near-infrared spectroscopy and multivariate calibration.
    Vergnoux A; Dupuy N; Guiliano M; Vennetier M; Théraulaz F; Doumenq P
    Talanta; 2009 Nov; 80(1):39-47. PubMed ID: 19782190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic approaches for phosphorus speciation in soils and other environmental systems.
    Kizewski F; Liu YT; Morris A; Hesterberg D
    J Environ Qual; 2011; 40(3):751-66. PubMed ID: 21546661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking phosphorus sequestration to carbon humification in wetland soils by 31P and 13C NMR spectroscopy.
    Hamdan R; El-Rifai HM; Cheesman AW; Turner BL; Reddy KR; Cooper WT
    Environ Sci Technol; 2012 May; 46(9):4775-82. PubMed ID: 22423890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speciation of Se and DOC in soil solution and their relation to Se bioavailability.
    Weng L; Vega FA; Supriatin S; Bussink W; Van Riemsdijk WH
    Environ Sci Technol; 2011 Jan; 45(1):262-7. PubMed ID: 21141820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands.
    Shahid M; Pinelli E; Dumat C
    J Hazard Mater; 2012 Jun; 219-220():1-12. PubMed ID: 22502897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.