These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 18970214)

  • 21. Feasibility study on the use of visible and near-infrared spectroscopy together with chemometrics to discriminate between commercial white wines of different varietal origins.
    Cozzolino D; Smyth HE; Gishen M
    J Agric Food Chem; 2003 Dec; 51(26):7703-8. PubMed ID: 14664532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Headspace-solid phase microextraction-gas chromatography as a tool to define an index that establishes the retention capacity of the wine polymeric fraction towards ethyl esters.
    Rocha SM; Coutinho P; Delgadillo I; Coimbra MA
    J Chromatogr A; 2007 May; 1150(1-2):155-61. PubMed ID: 17196969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electronic nose based tea quality standardization.
    Dutta R; Kashwan KR; Bhuyan M; Hines EL; Gardner JW
    Neural Netw; 2003; 16(5-6):847-53. PubMed ID: 12850043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Geographical origin of Sauvignon Blanc wines predicted by mass spectrometry and metal oxide based electronic nose.
    Berna AZ; Trowell S; Clifford D; Cynkar W; Cozzolino D
    Anal Chim Acta; 2009 Aug; 648(2):146-52. PubMed ID: 19646576
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differentiation of red wines using an electronic nose based on surface acoustic wave devices.
    García M; Fernández MJ; Fontecha JL; Lozano J; Santos JP; Aleixandre M; Sayago I; Gutiérrez J; Horrillo MC
    Talanta; 2006 Feb; 68(4):1162-5. PubMed ID: 18970446
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of skin contact and pressure on the composition of Sauvignon Blanc must.
    Maggu M; Winz R; Kilmartin PA; Trought MC; Nicolau L
    J Agric Food Chem; 2007 Dec; 55(25):10281-8. PubMed ID: 18020411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct coupling of a gas-liquid separator to an ion mobility spectrometer for the classification of different white wines using chemometrics tools.
    Garrido-Delgado R; Arce L; Guamán AV; Pardo A; Marco S; Valcárcel M
    Talanta; 2011 Apr; 84(2):471-9. PubMed ID: 21376975
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Discrimination of varieties of dry red wines based on independent component analysis and BP neural network].
    Wu GF; Jiang YH; Wang YY; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 May; 29(5):1268-71. PubMed ID: 19650468
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discrimination between Shiraz wines from different Australian regions: the role of spectroscopy and chemometrics.
    Riovanto R; Cynkar WU; Berzaghi P; Cozzolino D
    J Agric Food Chem; 2011 Sep; 59(18):10356-60. PubMed ID: 21842866
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrating a Low-Cost Electronic Nose and Machine Learning Modelling to Assess Coffee Aroma Profile and Intensity.
    Gonzalez Viejo C; Tongson E; Fuentes S
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pervaporation membrane separation process for enhancing the selectivity of an artificial olfactory system ("electronic nose").
    Schäfer T; Serrano-Santos MB; Rocchi S; Fuoco R
    Anal Bioanal Chem; 2006 Feb; 384(4):860-6. PubMed ID: 16402173
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Old Friends, Old Wine, and Old COPD Classification Are Best.
    Rhee CK
    Tuberc Respir Dis (Seoul); 2018 Oct; 81(4):347-348. PubMed ID: 30238716
    [No Abstract]   [Full Text] [Related]  

  • 33. Application of electronic nose and machine learning used to detect soybean gases under water stress and variability throughout the daytime.
    Herrmann PSP; Dos Santos Luccas M; Ferreira EJ; Torre Neto A
    Front Plant Sci; 2024; 15():1323296. PubMed ID: 38645391
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of Red Wine Acidification Using an E-Nose System with Venturi Tool Sampling.
    Hernández E; Pelegrí-Sebastiá J; Sogorb T; Chilo J
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991590
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low Complexity System on Chip Design to Acquire Signals from MOS Gas Sensor Applications.
    Talens JB; Pelegri-Sebastia J; Canet MJ
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640865
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling the Onset of Symptoms of COVID-19.
    Larsen JR; Martin MR; Martin JD; Kuhn P; Hicks JB
    Front Public Health; 2020; 8():473. PubMed ID: 32903584
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electronic Noses and Tongues in Wine Industry.
    Rodríguez-Méndez ML; De Saja JA; González-Antón R; García-Hernández C; Medina-Plaza C; García-Cabezón C; Martín-Pedrosa F
    Front Bioeng Biotechnol; 2016; 4():81. PubMed ID: 27826547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A wireless and portable electronic nose to differentiate musts of different ripeness degree and grape varieties.
    Aleixandre M; Santos JP; Sayago I; Cabellos JM; Arroyo T; Horrillo MC
    Sensors (Basel); 2015 Apr; 15(4):8429-43. PubMed ID: 25871715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electronic-nose applications for fruit identification, ripeness and quality grading.
    Baietto M; Wilson AD
    Sensors (Basel); 2015 Jan; 15(1):899-931. PubMed ID: 25569761
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quality evaluation of agricultural distillates using an electronic nose.
    Dymerski T; Gębicki J; Wardencki W; Namieśnik J
    Sensors (Basel); 2013 Nov; 13(12):15954-67. PubMed ID: 24287525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.