These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 18970275)
1. Fluorescence resonance energy transfer in doubly-quantum dot labeled IgG system. Ma Q; Su XG; Wang XY; Wan Y; Wang CL; Yang B; Jin QH Talanta; 2005 Oct; 67(5):1029-34. PubMed ID: 18970275 [TBL] [Abstract][Full Text] [Related]
2. [Quantitative determination of pazufloxacin using water-soluble quantum dots as fluorescent probes]. Ling X; Deng DW; Zhong WY; Yu JS Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1317-21. PubMed ID: 18800713 [TBL] [Abstract][Full Text] [Related]
3. Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots. Chen Q; Ma Q; Wan Y; Su X; Lin Z; Jin Q Luminescence; 2005; 20(4-5):251-5. PubMed ID: 16134207 [TBL] [Abstract][Full Text] [Related]
4. The inhibition of fluorescence resonance energy transfer between quantum dots for glucose assay. Hu B; Zhang LP; Chen ML; Chen ML; Wang JH Biosens Bioelectron; 2012 Feb; 32(1):82-8. PubMed ID: 22192453 [TBL] [Abstract][Full Text] [Related]
5. Developing mixed films of immobilized oligonucleotides and quantum dots for the multiplexed detection of nucleic acid hybridization using a combination of fluorescence resonance energy transfer and direct excitation of fluorescence. Algar WR; Krull UJ Langmuir; 2010 Apr; 26(8):6041-7. PubMed ID: 20000340 [TBL] [Abstract][Full Text] [Related]
6. Layer-by-layer assembly of multicolored semiconductor quantum dots towards efficient blue, green, red and full color optical films. Zhang J; Li Q; Di X; Liu Z; Xu G Nanotechnology; 2008 Oct; 19(43):435606. PubMed ID: 21832701 [TBL] [Abstract][Full Text] [Related]
7. The inhibition of fluorescence resonance energy transfer between multicolor quantum dots for rapid and sensitive detection of Staphylococcus aureus. Wang B; Wang Q; Ma M; Cai Z Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():428-34. PubMed ID: 25105265 [TBL] [Abstract][Full Text] [Related]
8. [Resonance scattering spectral properties of CdTe nanoparticles and its application]. Wang SM; Jiang ZL; Liang AH Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Sep; 28(9):2152-5. PubMed ID: 19093582 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence resonance energy transfer between two quantum dots with immunocomplexes of antigen and antibody as a bridge. Li Y; Ma Q; Wang X; Su X Luminescence; 2007; 22(1):60-6. PubMed ID: 17089351 [TBL] [Abstract][Full Text] [Related]
10. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors. Shi L; Rosenzweig N; Rosenzweig Z Anal Chem; 2007 Jan; 79(1):208-14. PubMed ID: 17194141 [TBL] [Abstract][Full Text] [Related]
11. High-sensitivity quantum dot-based fluorescence resonance energy transfer bioanalysis by capillary electrophoresis. Li YQ; Wang JH; Zhang HL; Yang J; Guan LY; Chen H; Luo QM; Zhao YD Biosens Bioelectron; 2010 Feb; 25(6):1283-9. PubMed ID: 19914053 [TBL] [Abstract][Full Text] [Related]
12. Detection of melamine based on the fluorescence resonance energy transfer between CdTe QDs and Rhodamine B. Tang G; Du L; Su X Food Chem; 2013 Dec; 141(4):4060-5. PubMed ID: 23993585 [TBL] [Abstract][Full Text] [Related]
13. Near infrared sensing based on fluorescence resonance energy transfer between Mn:CdTe quantum dots and Au nanorods. Liang GX; Pan HC; Li Y; Jiang LP; Zhang JR; Zhu JJ Biosens Bioelectron; 2009 Aug; 24(12):3693-7. PubMed ID: 19493671 [TBL] [Abstract][Full Text] [Related]
14. Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. Zhang K; Zhou H; Mei Q; Wang S; Guan G; Liu R; Zhang J; Zhang Z J Am Chem Soc; 2011 Jun; 133(22):8424-7. PubMed ID: 21563794 [TBL] [Abstract][Full Text] [Related]
15. Systematic investigation of the influence of CdTe QDs size on the toxic interaction with human serum albumin by fluorescence quenching method. Xiao J; Bai Y; Wang Y; Chen J; Wei X Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jun; 76(1):93-7. PubMed ID: 20359940 [TBL] [Abstract][Full Text] [Related]
16. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing. Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737 [TBL] [Abstract][Full Text] [Related]
17. Quantum-Dot-Based (Aero)gels: Control of the Optical Properties. Wolf A; Lesnyak V; Gaponik N; Eychmüller A J Phys Chem Lett; 2012 Aug; 3(16):2188-93. PubMed ID: 26295769 [TBL] [Abstract][Full Text] [Related]
18. A carbon dots-CdTe quantum dots fluorescence resonance energy transfer system for the analysis of ultra-trace chlortoluron in water. Tao H; Liao X; Sun C; Xie X; Zhong F; Yi Z; Huang Y Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1328-34. PubMed ID: 25456675 [TBL] [Abstract][Full Text] [Related]
19. Study on the interaction of CdTe quantum dots with coumaric acid and caffeic acid based on fluorescence reversible tune. Fan X; Liu S; He Y Colloids Surf B Biointerfaces; 2011 Nov; 88(1):23-30. PubMed ID: 21816585 [TBL] [Abstract][Full Text] [Related]
20. Development of homogeneous binding assays based on fluorescence resonance energy transfer between quantum dots and Alexa Fluor fluorophores. Nikiforov TT; Beechem JM Anal Biochem; 2006 Oct; 357(1):68-76. PubMed ID: 16860286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]