These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 18970364)

  • 1. Study on photocatalytic oxidation for determination of the low chemical oxygen demand using a nano-TiO2-Ce(SO4)2 coexisted system.
    Chai Y; Ding H; Zhang Z; Xian Y; Pan Z; Jin L
    Talanta; 2006 Jan; 68(3):610-5. PubMed ID: 18970364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of photocatalytic nano-ZnO/TiO(2) film and application for determination of chemical oxygen demand.
    Zhang Z; Yuan Y; Fang Y; Liang L; Ding H; Jin L
    Talanta; 2007 Sep; 73(3):523-8. PubMed ID: 19073065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of chemical oxygen demand values by a photocatalytic oxidation method using nano-TiO2 film on quartz.
    Li J; Li L; Zheng L; Xian Y; Jin L
    Talanta; 2006 Jan; 68(3):765-70. PubMed ID: 18970388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A surface-fluorinated-TiO2-KMnO4 photocatalytic system for determination of chemical oxygen demand.
    Zhu L; Chen Y; Wu Y; Li X; Tang H
    Anal Chim Acta; 2006 Jul; 571(2):242-7. PubMed ID: 17723445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of chemical oxygen demand in fresh waters using flow injection with on-line UV-photocatalytic oxidation and spectrophotometric detection.
    Dan D; Sandford RC; Worsfold PJ
    Analyst; 2005 Feb; 130(2):227-32. PubMed ID: 15665978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and application of TiO2 photocatalytic sensor for chemical oxygen demand determination in water research.
    Chen J; Zhang J; Xian Y; Ying X; Liu M; Jin L
    Water Res; 2005 Apr; 39(7):1340-6. PubMed ID: 15862333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocatalytic pretreatment of oily wastewater from the restaurant by a vacuum ultraviolet/TiO2 system.
    Kang JX; Lu L; Zhan W; Li B; Li DS; Ren YZ; Liu DQ
    J Hazard Mater; 2011 Feb; 186(1):849-54. PubMed ID: 21146288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combined photocatalytic determination system for chemical oxygen demand with a highly oxidative reagent.
    Zhang A; Zhou M; Zhou Q
    Anal Chim Acta; 2011 Feb; 686(1-2):133-43. PubMed ID: 21237319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocatalytic oxidation technology for humic acid removal using a nano-structured TiO2/Fe2O3 catalyst.
    Qiao S; Sun DD; Tay JH; Easton C
    Water Sci Technol; 2003; 47(1):211-7. PubMed ID: 12578197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A portable photoelectrochemical probe for rapid determination of chemical oxygen demand in wastewaters.
    Zhang S; Li L; Zhao H
    Environ Sci Technol; 2009 Oct; 43(20):7810-5. PubMed ID: 19921898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A flow method with photocatalytic oxidation of dissolved organic matter using a solid-phase (TiO2) reactor followed by amperometric detection of consumed oxygen.
    Kim YC; Sasaki S; Yano K; Ikebukuro K; Hashimoto K; Karube I
    Anal Chem; 2002 Aug; 74(15):3858-64. PubMed ID: 12175176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the photocatalytic reduction of dichromate and photocatalytic oxidation of dichlorvos.
    Chen S; Cao G
    Chemosphere; 2005 Sep; 60(9):1308-15. PubMed ID: 16018902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous photocatalytic oxidation of As(III) and humic acid in aqueous TiO2 suspensions.
    Tsimas ES; Tyrovola K; Xekoukoulotakis NP; Nikolaidis NP; Diamadopoulos E; Mantzavinos D
    J Hazard Mater; 2009 Sep; 169(1-3):376-85. PubMed ID: 19395168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured TiO2 photocatalysts for the determination of organic pollutants.
    Qiu J; Zhang S; Zhao H
    J Hazard Mater; 2012 Apr; 211-212():381-8. PubMed ID: 22133353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and activity evaluation of p-n junction photocatalyst NiO/TiO2.
    Shifu C; Sujuan Z; Wei L; Wei Z
    J Hazard Mater; 2008 Jun; 155(1-2):320-6. PubMed ID: 18166268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhance the photocatalytic activity for the degradation of organic contaminants in water by incorporating TiO2 with zero-valent iron.
    Hsieh WP; Pan JR; Huang C; Su YC; Juang YJ
    Sci Total Environ; 2010 Jan; 408(3):672-9. PubMed ID: 19896167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and mechanism analysis of Mo-N-co-doped TiO2 nano-photocatalyst and its enhanced visible activity.
    Cheng X; Yu X; Xing Z
    J Colloid Interface Sci; 2012 Apr; 372(1):1-5. PubMed ID: 22326229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic reduction of Cr(VI) over different TiO2 photocatalysts and the effects of dissolved organic species.
    Wang L; Wang N; Zhu L; Yu H; Tang H
    J Hazard Mater; 2008 Mar; 152(1):93-9. PubMed ID: 17664041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high throughput chemiluminescence method for determination of chemical oxygen demand in waters.
    Yao H; Wu B; Qu H; Cheng Y
    Anal Chim Acta; 2009 Feb; 633(1):76-80. PubMed ID: 19110119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of natural organic matter from water using a nano-structured photocatalyst coupled with filtration membrane.
    Sun D; Meng TT; Loong TH; Hwa TJ
    Water Sci Technol; 2004; 49(1):103-10. PubMed ID: 14979544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.