BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 18970367)

  • 1. Direct detection of trimethylamine in meat food products using ion mobility spectrometry.
    Bota GM; Harrington PB
    Talanta; 2006 Jan; 68(3):629-35. PubMed ID: 18970367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitive detection of trimethylamine based on dopant-assisted positive photoionization ion mobility spectrometry.
    Cheng S; Li H; Jiang D; Chen C; Zhang T; Li Y; Wang H; Zhou Q; Li H; Tan M
    Talanta; 2017 Jan; 162():398-402. PubMed ID: 27837847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of meat-borne trimethylamine based on nanoporous colorimetric sensor arrays.
    Xiao-wei H; Zhi-hua L; Xiao-bo Z; Ji-yong S; Han-ping M; Jie-wen Z; Li-min H; Mel H
    Food Chem; 2016 Apr; 197(Pt A):930-6. PubMed ID: 26617036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Total volatile basic nitrogen and trimethylamine in muscle foods: Potential formation pathways and effects on human health.
    Bekhit AEA; Giteru SG; Holman BWB; Hopkins DL
    Compr Rev Food Sci Food Saf; 2021 Jul; 20(4):3620-3666. PubMed ID: 34056832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of artificial neural networks and partial least squares modelling for the rapid detection of the microbial spoilage of beef fillets based on Fourier transform infrared spectral fingerprints.
    Panagou EZ; Mohareb FR; Argyri AA; Bessant CM; Nychas GJ
    Food Microbiol; 2011 Jun; 28(4):782-90. PubMed ID: 21511139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved quantitative analysis of ion mobility spectrometry by chemometric multivariate calibration.
    Fraga CG; Kerr DR; Atkinson DA
    Analyst; 2009 Nov; 134(11):2329-37. PubMed ID: 19838423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of heterocyclic amines and beta-carbolines by liquid chromatography-mass spectrometry in cooked meats commonly consumed in Korea.
    Back YM; Lee JH; Shin HS; Lee KG
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Mar; 26(3):298-305. PubMed ID: 19680902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biogenic amines in chicken meat products in relation to bacterial load, pH value and sodium chloride content.
    Nassar AM; Emam WH
    Nahrung; 2002 Jun; 46(3):197-9. PubMed ID: 12108221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of jet fuels by fuzzy rule-building expert systems applied to three-way data by fast gas chromatography--fast scanning quadrupole ion trap mass spectrometry.
    Sun X; Zimmermann CM; Jackson GP; Bunker CE; Harrington PB
    Talanta; 2011 Jan; 83(4):1260-8. PubMed ID: 21215862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas chromatographic method for determination of dimethylamine, trimethylamine, and trimethylamine oxide in fish-meat frankfurters.
    Fiddler W; Doerr RC; Gates RA
    J Assoc Off Anal Chem; 1991; 74(2):400-3. PubMed ID: 2050619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forensic application of gas chromatography-differential mobility spectrometry with two-way classification of ignitable liquids from fire debris.
    Lu Y; Harrington PB
    Anal Chem; 2007 Sep; 79(17):6752-9. PubMed ID: 17683164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the performance of three ion mobility spectrometers for measurement of biogenic amines.
    Karpas Z; Guamán AV; Pardo A; Marco S
    Anal Chim Acta; 2013 Jan; 758():122-9. PubMed ID: 23245904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Additive impairment of the barrier function and irritation by biogenic amines and sodium lauryl sulphate: a controlled in vivo tandem irritation study.
    Fluhr JW; Kelterer D; Fuchs S; Kaatz M; Grieshaber R; Kleesz P; Elsner P
    Skin Pharmacol Physiol; 2005; 18(2):88-97. PubMed ID: 15767770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactic acid bacteria associated with vacuum-packed cooked meat product spoilage: population analysis by rDNA-based methods.
    Chenoll E; Macián MC; Elizaquível P; Aznar R
    J Appl Microbiol; 2007 Feb; 102(2):498-508. PubMed ID: 17241356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feature selection of gas chromatography/mass spectrometry chemical profiles of basil plants using a bootstrapped fuzzy rule-building expert system.
    Wang Z; Harrington Pde B
    Anal Bioanal Chem; 2013 Nov; 405(28):9219-34. PubMed ID: 24085188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of humidity on sensitivity of amine detection in ion mobility spectrometry.
    Mäkinen M; Sillanpää M; Viitanen AK; Knap A; Mäkelä JM; Puton J
    Talanta; 2011 Mar; 84(1):116-21. PubMed ID: 21315907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Quantitative risk assessment of Listeria monocytogenes in bulk cooked meat products].
    Tian J; Fan YX; Liu XM
    Zhonghua Yu Fang Yi Xue Za Zhi; 2011 Jun; 45(6):537-42. PubMed ID: 21914338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A proteomic-based approach for detection of chicken in meat mixes.
    Sentandreu MA; Fraser PD; Halket J; Patel R; Bramley PM
    J Proteome Res; 2010 Jul; 9(7):3374-83. PubMed ID: 20433202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative response of IMS detector for mixtures containing two active components.
    Puton J; Holopainen SI; Mäkinen MA; Sillanpää ME
    Anal Chem; 2012 Nov; 84(21):9131-8. PubMed ID: 23067016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterocyclic amine content in commercial ready to eat meat products.
    Puangsombat K; Gadgil P; Houser TA; Hunt MC; Smith JS
    Meat Sci; 2011 Jun; 88(2):227-33. PubMed ID: 21242037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.