These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 18970372)

  • 1. Nanofluidic channels by anodic bonding of amorphous silicon to glass to study ion-accumulation and ion-depletion effect.
    Datta A; Gangopadhyay S; Temkin H; Pu Q; Liu S
    Talanta; 2006 Jan; 68(3):659-65. PubMed ID: 18970372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding.
    Mao P; Han J
    Lab Chip; 2005 Aug; 5(8):837-44. PubMed ID: 16027934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid plasma bonding for void-free strong bonded interface of silicon/glass at 200 degrees C.
    Howlader MM; Kibria MG; Zhang F; Kim MJ
    Talanta; 2010 Jul; 82(2):508-15. PubMed ID: 20602928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantitative model to evaluate the ion-enrichment and ion-depletion effect at microchannel-nanochannel junctions.
    Li G; Wang S; Byun CK; Wang X; Liu S
    Anal Chim Acta; 2009 Sep; 650(2):214-20. PubMed ID: 19720195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding.
    Abgrall P; Low LN; Nguyen NT
    Lab Chip; 2007 Apr; 7(4):520-2. PubMed ID: 17389971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of sub-100/10 nm planar nanofluidic channels by triple thermal oxidation and silicon-glass anodic bonding.
    Ouyang W; Wang W
    Biomicrofluidics; 2014 Sep; 8(5):052106. PubMed ID: 25538802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-planar nanofluidic devices for single molecule analysis fabricated using nanoglassblowing.
    Strychalski EA; Stavis SM; Craighead HG
    Nanotechnology; 2008 Aug; 19(31):315301. PubMed ID: 21828782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and fabrication of nanofluidic devices by surface micromachining.
    Han A; de Rooij NF; Staufer U
    Nanotechnology; 2006 May; 17(10):2498-503. PubMed ID: 21727495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple fabrication of hydrophilic nanochannels using the chemical bonding between activated ultrathin PDMS layer and cover glass by oxygen plasma.
    Kim SH; Cui Y; Lee MJ; Nam SW; Oh D; Kang SH; Kim YS; Park S
    Lab Chip; 2011 Jan; 11(2):348-53. PubMed ID: 20957251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion transport in graphene nanofluidic channels.
    Xie Q; Xin F; Park HG; Duan C
    Nanoscale; 2016 Dec; 8(47):19527-19535. PubMed ID: 27878192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices.
    Cheng LJ; Guo LJ
    ACS Nano; 2009 Mar; 3(3):575-84. PubMed ID: 19220010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free-flow electrophoresis on an anodic bonded glass microchip.
    Fonslow BR; Bowser MT
    Anal Chem; 2005 Sep; 77(17):5706-10. PubMed ID: 16131085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrokinetics in nanochannels: part I. Electric double layer overlap and channel-to-well equilibrium.
    Baldessari F; Santiago JG
    J Colloid Interface Sci; 2008 Sep; 325(2):526-38. PubMed ID: 18639883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of self-sealed circular nano/microfluidic channels in glass substrates.
    Wong CC; Agarwal A; Balasubramanian N; Kwong DL
    Nanotechnology; 2007 Apr; 18(13):135304. PubMed ID: 21730378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of wafer-level glass cavities by a low-cost chemical foaming process (CFP).
    Shang J; Chen B; Lin W; Wong CP; Zhang D; Xu C; Liu J; Huang QA
    Lab Chip; 2011 Apr; 11(8):1532-40. PubMed ID: 21387022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotubes integrated in electrically insulated channels for lab-on-a-chip applications.
    Mogensen KB; Gangloff L; Boggild P; Teo KB; Milne WI; Kutter JP
    Nanotechnology; 2009 Mar; 20(9):095503. PubMed ID: 19417490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature.
    Gu J; Gupta R; Chou CF; Wei Q; Zenhausern F
    Lab Chip; 2007 Sep; 7(9):1198-201. PubMed ID: 17713620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-temperature direct bonding of glass nanofluidic chips using a two-step plasma surface activation process.
    Xu Y; Wang C; Dong Y; Li L; Jang K; Mawatari K; Suga T; Kitamori T
    Anal Bioanal Chem; 2012 Jan; 402(3):1011-8. PubMed ID: 22134493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propagating concentration polarization and ionic current rectification in a nanochannel-nanofunnel device.
    Hlushkou D; Perry JM; Jacobson SC; Tallarek U
    Anal Chem; 2012 Jan; 84(1):267-74. PubMed ID: 22111623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parylene to silicon nitride bonding for post-integration of high pressure microfluidics to CMOS devices.
    Ciftlik AT; Gijs MA
    Lab Chip; 2012 Jan; 12(2):396-400. PubMed ID: 22134687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.