These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18970516)

  • 21. Using Nondestructive Portable X-ray Fluorescence Spectrometers on Stone, Ceramics, Metals, and Other Materials in Museums: Advantages and Limitations.
    Tykot RH
    Appl Spectrosc; 2016 Jan; 70(1):42-56. PubMed ID: 26767632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Data from Multiple Portable XRF Units and Their Significance for Ancient Glass Studies.
    Yatsuk O; Ferretti M; Gorghinian A; Fiocco G; Malagodi M; Agostino A; Gulmini M
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparison of portable XRF and ICP-OES analysis for lead on air filter samples from a lead ore concentrator mill and a lead-acid battery recycler.
    Harper M; Pacolay B; Hintz P; Andrew ME
    J Environ Monit; 2006 Mar; 8(3):384-92. PubMed ID: 16528423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative Chemical Analysis of Archaeological Slag Material Using Handheld X-ray Fluorescence Spectrometry.
    Scott RB; Eekelers K; Degryse P
    Appl Spectrosc; 2016 Jan; 70(1):94-109. PubMed ID: 26767636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [The Non-Destructive Analysis of Some Ancient Jade Artifacts Unearthed from Henan Province by a Variety of Optical Techniques].
    Wang K; Dong JQ; Zhao HX; Gan FX; Hu YQ; Pan WQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Sep; 35(9):2492-9. PubMed ID: 26669154
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A remote scanning Raman spectrometer for in situ measurements of works of art.
    Brambilla A; Osticioli I; Nevin A; Comelli D; D'Andrea C; Lofrumento C; Valentini G; Cubeddu R
    Rev Sci Instrum; 2011 Jun; 82(6):063109. PubMed ID: 21721676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of Field Portable X-Ray Fluorescence Performance for the Analysis of Ni in Soil.
    Du GD; Lei M; Zhou GD; Chen TB; Qiu RL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Mar; 35(3):809-13. PubMed ID: 26117902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of Roman Imperial coins by combined PIXE, HE-PIXE and μ-XRF.
    Vadrucci M; Mazzinghi A; Gorghinian A; Picardi L; Ronsivalle C; Ruberto C; Chiari M
    Appl Radiat Isot; 2019 Jan; 143():35-40. PubMed ID: 30368051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of soil pollution concentrations determined using AAS and portable XRF techniques.
    Radu T; Diamond D
    J Hazard Mater; 2009 Nov; 171(1-3):1168-71. PubMed ID: 19595504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First use of portable system coupling X-ray diffraction and X-ray fluorescence for in-situ analysis of prehistoric rock art.
    Beck L; Rousselière H; Castaing J; Duran A; Lebon M; Moignard B; Plassard F
    Talanta; 2014 Nov; 129():459-64. PubMed ID: 25127619
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of laser ablation-inductively coupled plasma-mass spectrometry and micro-X-ray fluorescence spectrometry for elemental imaging in Daphnia magna.
    Gholap DS; Izmer A; De Samber B; van Elteren JT; Selih VS; Evens R; De Schamphelaere K; Janssen C; Balcaen L; Lindemann I; Vincze L; Vanhaecke F
    Anal Chim Acta; 2010 Apr; 664(1):19-26. PubMed ID: 20226927
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid detection of toxic metals in non-crushed oyster shells by portable X-ray fluorescence spectrometry.
    Chou J; Clement G; Bursavich B; Elbers D; Cao B; Zhou W
    Environ Pollut; 2010 Jun; 158(6):2230-4. PubMed ID: 20227802
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Development of ceramic standard samples used for X-ray fluorescence spectrometric analysis].
    Zhu JH; Feng SL; Chu FY; Feng XQ; Xie GX; Yan LT; Li L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Nov; 30(11):3143-8. PubMed ID: 21284202
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Study on the cultural relic material site and period by EDXRF].
    Zhou SH; Fu L; Leung BL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 May; 28(5):1181-5. PubMed ID: 18720829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Paradigm shift in classical elemental analysis.
    Karanassion V
    Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Feb; 23(1):104-14. PubMed ID: 12939983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging.
    Vincze L; Vekemans B; Brenker FE; Falkenberg G; Rickers K; Somogyi A; Kersten M; Adams F
    Anal Chem; 2004 Nov; 76(22):6786-91. PubMed ID: 15538804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Textural and Mineralogical Analysis of Volcanic Rocks by µ-XRF Mapping.
    Germinario L; Cossio R; Maritan L; Borghi A; Mazzoli C
    Microsc Microanal; 2016 Jun; 22(3):690-7. PubMed ID: 27160144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PXRF, μ-XRF, vacuum μ-XRF, and EPMA analysis of Email Champlevé objects present in Belgian museums.
    Van der Linden V; Meesdom E; Devos A; Van Dooren R; Nieuwdorp H; Janssen E; Balace S; Vekemans B; Vincze L; Janssens K
    Microsc Microanal; 2011 Oct; 17(5):674-85. PubMed ID: 21939587
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a combined portable x-ray fluorescence and Raman spectrometer for in situ analysis.
    Guerra M; Longelin S; Pessanha S; Manso M; Carvalho ML
    Rev Sci Instrum; 2014 Jun; 85(6):063113. PubMed ID: 24985805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. µ-XRF Analysis of Trace Elements in Lapis Lazuli-Forming Minerals for a Provenance Study.
    Angelici D; Borghi A; Chiarelli F; Cossio R; Gariani G; Lo Giudice A; Re A; Pratesi G; Vaggelli G
    Microsc Microanal; 2015 Apr; 21(2):526-33. PubMed ID: 25782348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.