BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 18970589)

  • 1. Determination of 6-mercaptopurine based on the fluorescence enhancement of Au nanoparticles.
    Shen XC; Jiang LF; Liang H; Lu X; Zhang LJ; Liu XY
    Talanta; 2006 Apr; 69(2):456-62. PubMed ID: 18970589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of melamine in milk powder based on the fluorescence enhancement of Au nanoparticles.
    Xiang D; Zeng G; Zhai K; Li L; He Z
    Analyst; 2011 Jul; 136(13):2837-44. PubMed ID: 21589976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, size control and fluorescence studies of gold nanoparticles in carboxymethylated chitosan aqueous solutions.
    Huang L; Zhai M; Peng J; Xu L; Li J; Wei G
    J Colloid Interface Sci; 2007 Dec; 316(2):398-404. PubMed ID: 17707389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of 6-mercaptopurine and 6-mercaptopurine-ribosideon silver colloid: a pH-dependent surface-enhanced Raman spectroscopy and density functional theory study. II. 6-mercaptopurine-riboside.
    Szeghalmi AV; Leopold L; Pînzaru S; Chis V; Silaghi-Dumitrescu I; Schmitt M; Popp J; Kiefer W
    Biopolymers; 2005 Aug; 78(6):298-310. PubMed ID: 15832317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercaptothiadiazole capped gold nanoparticles as fluorophore for the determination of nanomolar mercury(II) in aqueous solution in the presence of 50,000-fold major interferents.
    Vasimalai N; John SA
    Analyst; 2012 Jul; 137(14):3349-54. PubMed ID: 22685704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement.
    Sztainbuch IW
    J Chem Phys; 2006 Sep; 125(12):124707. PubMed ID: 17014200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Picomolar melamine enhanced the fluorescence of gold nanoparticles: spectrofluorimetric determination of melamine in milk and infant formulas using functionalized triazole capped gold nanoparticles.
    Vasimalai N; Abraham John S
    Biosens Bioelectron; 2013 Apr; 42():267-72. PubMed ID: 23208097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive determination of nucleic acids using organic nanoparticle fluorescence probes.
    Zhou Y; Bian G; Wang L; Dong L; Wang L; Kan J
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jun; 61(8):1841-5. PubMed ID: 15863055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly and encoding of polymer-stabilized gold nanoparticles with surface-enhanced Raman reporter molecules.
    Merican Z; Schiller TL; Hawker CJ; Fredericks PM; Blakey I
    Langmuir; 2007 Oct; 23(21):10539-45. PubMed ID: 17824719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence determination of DNA with 1-pyrenebutyric acid nanoparticles coated with beta-cyclodextrin as a fluorescence probe.
    Wang L; Bian G; Wang L; Dong L; Chen H; Xia T
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Apr; 61(6):1201-5. PubMed ID: 15741122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Preparation and fluorescence properties of calix[4]arene nanoparticle].
    Liu C; Xu HW; Yu HP; Lu Q; Wang L; Zhou YY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Nov; 27(11):2283-6. PubMed ID: 18260414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Electrochemical synthesis and spectroscopic characterization of gold nanoparticles].
    Shen LM; Yao JL; Gu RA
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Dec; 25(12):1998-2001. PubMed ID: 16544491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A turn-on highly selective and ultrasensitive determination of copper (II) in an aqueous medium using folic acid capped gold nanoparticles as the probe.
    Vasimalai N; Prabhakarn A; John SA
    Nanotechnology; 2013 Dec; 24(50):505503. PubMed ID: 24284553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman spectroscopy of p-hydroxybenzoic acid aqueous solution and surface-unenhanced Raman scattering on silver colloid with ultraviolet excitation.
    Xu L; Fang Y
    J Colloid Interface Sci; 2004 Jun; 274(1):122-5. PubMed ID: 15120286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold nanoparticles-based fluorescence enhancement of the terbium-levofloxacin system and its application in pharmaceutical preparations.
    Lee SH; Wabaidur SM; Alothman ZA; Alam SM
    Luminescence; 2011; 26(6):768-73. PubMed ID: 21608101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green synthesis of Au nanoparticles immobilized on halloysite nanotubes for surface-enhanced Raman scattering substrates.
    Zhu H; Du M; Zou M; Xu C; Fu Y
    Dalton Trans; 2012 Sep; 41(34):10465-71. PubMed ID: 22821202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilized gold nanoparticles by reduction using 3,4-ethylenedioxythiophene-polystyrenesulfonate in aqueous solutions: nanocomposite formation, stability, and application in catalysis.
    Kumar SS; Kumar CS; Mathiyarasu J; Phani KL
    Langmuir; 2007 Mar; 23(6):3401-8. PubMed ID: 17284059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit.
    Fan M; Brolo AG
    Phys Chem Chem Phys; 2009 Sep; 11(34):7381-9. PubMed ID: 19690709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a heat-induced surface-enhanced Raman scattering sensing method for rapid detection of glutathione in aqueous solutions.
    Huang GG; Han XX; Hossain MK; Ozaki Y
    Anal Chem; 2009 Jul; 81(14):5881-8. PubMed ID: 19518138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution-based direct readout surface enhanced Raman spectroscopic (SERS) detection of ultra-low levels of thiram with dogbone shaped gold nanoparticles.
    Saute B; Narayanan R
    Analyst; 2011 Feb; 136(3):527-32. PubMed ID: 21113557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.