BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18970815)

  • 1. Determination of indium in high purity antimony by electrothermal atomic absorption spectrometry (ETAAS) using boric acid as a modifier.
    Dash K; Thangavel S; Chaurasia SC; Arunachalam J
    Talanta; 2006 Oct; 70(3):602-8. PubMed ID: 18970815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of traces of rubidium in high purity cesium chloride by electrothermal atomic absorption spectrometry (ETAAS) using boric acid as a modifier.
    Dash K; Thangavel S; Chaurasia SC; Arunachalam J
    Anal Chim Acta; 2007 Feb; 584(1):210-4. PubMed ID: 17386606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct sample introduction of wines in graphite furnace atomic absorption spectrometry for the simultaneous determination of arsenic, cadmium, copper and lead content.
    Ajtony Z; Szoboszlai N; Suskó EK; Mezei P; György K; Bencs L
    Talanta; 2008 Jul; 76(3):627-34. PubMed ID: 18585331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of toxic elements in plastics from waste electrical and electronic equipment by slurry sampling electrothermal atomic absorption spectrometry.
    Santos MC; Nóbrega JA; Baccan N; Cadore S
    Talanta; 2010 Jun; 81(4-5):1781-7. PubMed ID: 20441973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Palladium-citric acid-ammonium fluoride as a matrix modifier for overcoming of interferences occurring during the direct determination of Sn in aqua regia extracts from environmental samples by D2-ETAAS.
    Husáková L; Srámková J; Cernohorský T; Urbanová-Dolezalová I
    Talanta; 2009 Feb; 77(4):1504-9. PubMed ID: 19084671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of tellurium in indium antimonide semiconductor material by electrothermal atomic absorption spectrometry.
    Shiue MY; Sun YC; Yang MH
    Analyst; 2001 Aug; 126(8):1449-52. PubMed ID: 11534624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [GFAAS determination of trace amount cadmium in chitosan by micro wave].
    Weng D; Zhai GQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Apr; 25(4):567-9. PubMed ID: 16097687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separate vaporisation of boric acid and inorganic boron from tungsten sample cuvette-tungsten boat furnace followed by the detection of boron species by inductively coupled plasma mass spectrometry and atomic emission spectrometry (ICP-MS and ICP-AES).
    Kataoka H; Okamoto Y; Tsukahara S; Fujiwara T; Ito K
    Anal Chim Acta; 2008 Mar; 610(2):179-85. PubMed ID: 18291127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of traces of Ni in Li(2)CO(3)/Na(2)CO(3) melts by graphite furnace atomic absorption spectrometry.
    Scaccia S
    Talanta; 2005 Apr; 66(3):805-8. PubMed ID: 18970055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elimination of hydrofluoric acid interference in the determination of antimony by the hydride generation technique.
    D'Ulivo A; Lampugnani L; Faraci D; Tsalev DL; Zamboni R
    Talanta; 1998 Mar; 45(5):801-6. PubMed ID: 18967064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method development for the determination of lead in wine using electrothermal atomic absorption spectrometry comparing platform and filter furnace atomizers and different chemical modifiers.
    Dessuy MB; Vale MG; Souza AS; Ferreira SL; Welz B; Katskov DA
    Talanta; 2008 Feb; 74(5):1321-9. PubMed ID: 18371785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimony in drinking water, red blood cells, and serum: development of analytical methodology using transversely heated graphite furnace atomization-atomic absorption spectrometry.
    Subramanian KS; Poon R; Chu I; Connor JW
    Arch Environ Contam Toxicol; 1997 May; 32(4):431-5. PubMed ID: 9175512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of experimental parameters on the determination of antimony in seawater by atomic absorption spectrometry using a transversely heated graphite furnace with Zeeman-effect background correction.
    Cabon JY
    Anal Bioanal Chem; 2002 Dec; 374(7-8):1282-9. PubMed ID: 12474098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ascorbic acid as a matrix modifier for determination of tin in concentrated boric acid solutions by electrothermal atomic-absorption spectrometry.
    Volynsky AB; Sedykh EM; Bannykh LN
    Talanta; 1991 Jul; 38(7):761-5. PubMed ID: 18965217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of using solid sampling graphite furnace atomic absorption spectrometry for speciation analysis of volatile and non-volatile compounds of nickel and vanadium in crude oil.
    Silva MM; Damin IC; Vale MG; Welz B
    Talanta; 2007 Mar; 71(5):1877-85. PubMed ID: 19071537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indium determination in different environmental materials by electrothermal atomic absorption spectrometry with Amberlite XAD-2 coated with 1-(2-pyridylazo)-2-naphthol.
    Martínez A NC; Barrera AB; Bermejo B P
    Talanta; 2005 Apr; 66(3):646-52. PubMed ID: 18970033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of indium atomization from different atomizer surfaces in electrothermal atomic absorption spectrometry (ETAAS).
    Yan XP; Ni ZM; Yang XT; Hong GQ
    Talanta; 1993 Dec; 40(12):1839-46. PubMed ID: 18965860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of cadmium in urine specimens by graphite furnace atomic absorption spectrometry using a fast atomization program.
    Hernández-Caraballo EA; Burguera M; Burguera JL
    Talanta; 2004 May; 63(2):419-24. PubMed ID: 18969449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of internal standardization in the direct and simultaneous determination of As, Cu and Pb in sugar-cane spirits by graphite furnace atomic absorption spectrometry.
    Caldas NM; Oliveira SR; Gomes Neto JA
    Anal Chim Acta; 2009 Mar; 636(1):1-5. PubMed ID: 19231348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Determination of selenium by platform graphite furnace atomic absorption spectrometry].
    Xie W; Yao J; Ma G
    Guang Pu Xue Yu Guang Pu Fen Xi; 1998 Dec; 18(6):700-2. PubMed ID: 15825283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.