These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
615 related articles for article (PubMed ID: 18971272)
1. Bromodomain protein Brd4 regulates human immunodeficiency virus transcription through phosphorylation of CDK9 at threonine 29. Zhou M; Huang K; Jung KJ; Cho WK; Klase Z; Kashanchi F; Pise-Masison CA; Brady JN J Virol; 2009 Jan; 83(2):1036-44. PubMed ID: 18971272 [TBL] [Abstract][Full Text] [Related]
2. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Jang MK; Mochizuki K; Zhou M; Jeong HS; Brady JN; Ozato K Mol Cell; 2005 Aug; 19(4):523-34. PubMed ID: 16109376 [TBL] [Abstract][Full Text] [Related]
3. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Yang Z; Yik JH; Chen R; He N; Jang MK; Ozato K; Zhou Q Mol Cell; 2005 Aug; 19(4):535-45. PubMed ID: 16109377 [TBL] [Abstract][Full Text] [Related]
4. T-loop phosphorylated Cdk9 localizes to nuclear speckle domains which may serve as sites of active P-TEFb function and exchange between the Brd4 and 7SK/HEXIM1 regulatory complexes. Dow EC; Liu H; Rice AP J Cell Physiol; 2010 Jul; 224(1):84-93. PubMed ID: 20201073 [TBL] [Abstract][Full Text] [Related]
5. An in vitro transcription system that recapitulates equine infectious anemia virus tat-mediated inhibition of human immunodeficiency virus type 1 Tat activity demonstrates a role for positive transcription elongation factor b and associated proteins in the mechanism of Tat activation. Suñé C; Goldstrohm AC; Peng J; Price DH; Garcia-Blanco MA Virology; 2000 Sep; 274(2):356-66. PubMed ID: 10964778 [TBL] [Abstract][Full Text] [Related]
6. Coordination of transcription factor phosphorylation and histone methylation by the P-TEFb kinase during human immunodeficiency virus type 1 transcription. Zhou M; Deng L; Lacoste V; Park HU; Pumfery A; Kashanchi F; Brady JN; Kumar A J Virol; 2004 Dec; 78(24):13522-33. PubMed ID: 15564463 [TBL] [Abstract][Full Text] [Related]
7. Phosphorylation of CDK9 at Ser175 enhances HIV transcription and is a marker of activated P-TEFb in CD4(+) T lymphocytes. Mbonye UR; Gokulrangan G; Datt M; Dobrowolski C; Cooper M; Chance MR; Karn J PLoS Pathog; 2013; 9(5):e1003338. PubMed ID: 23658523 [TBL] [Abstract][Full Text] [Related]
8. Cyclin-dependent kinase 7 (CDK7)-mediated phosphorylation of the CDK9 activation loop promotes P-TEFb assembly with Tat and proviral HIV reactivation. Mbonye U; Wang B; Gokulrangan G; Shi W; Yang S; Karn J J Biol Chem; 2018 Jun; 293(26):10009-10025. PubMed ID: 29743242 [TBL] [Abstract][Full Text] [Related]
9. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Brès V; Gomes N; Pickle L; Jones KA Genes Dev; 2005 May; 19(10):1211-26. PubMed ID: 15905409 [TBL] [Abstract][Full Text] [Related]
10. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. Wada T; Takagi T; Yamaguchi Y; Watanabe D; Handa H EMBO J; 1998 Dec; 17(24):7395-403. PubMed ID: 9857195 [TBL] [Abstract][Full Text] [Related]
11. The Tat/TAR-dependent phosphorylation of RNA polymerase II C-terminal domain stimulates cotranscriptional capping of HIV-1 mRNA. Zhou M; Deng L; Kashanchi F; Brady JN; Shatkin AJ; Kumar A Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12666-71. PubMed ID: 14569024 [TBL] [Abstract][Full Text] [Related]
12. The emerging picture of CDK9/P-TEFb: more than 20 years of advances since PITALRE. Paparidis NF; Durvale MC; Canduri F Mol Biosyst; 2017 Jan; 13(2):246-276. PubMed ID: 27833949 [TBL] [Abstract][Full Text] [Related]
13. Regulatory functions of Cdk9 and of cyclin T1 in HIV tat transactivation pathway gene expression. Romano G; Kasten M; De Falco G; Micheli P; Khalili K; Giordano A J Cell Biochem; 1999 Dec; 75(3):357-68. PubMed ID: 10536359 [TBL] [Abstract][Full Text] [Related]
14. Positive transcription elongation factor b (P-TEFb) contributes to dengue virus-stimulated induction of interleukin-8 (IL-8). Li LL; Hu ST; Wang SH; Lee HH; Wang YT; Ping YH Cell Microbiol; 2010 Nov; 12(11):1589-603. PubMed ID: 20618343 [TBL] [Abstract][Full Text] [Related]
15. Cellular control of gene expression by T-type cyclin/CDK9 complexes. Garriga J; Graña X Gene; 2004 Aug; 337():15-23. PubMed ID: 15276198 [TBL] [Abstract][Full Text] [Related]
16. Catalytic activity of Cdk9 is required for nuclear co-localization of the Cdk9/cyclin T1 (P-TEFb) complex. Napolitano G; Majello B; Lania L J Cell Physiol; 2003 Oct; 197(1):1-7. PubMed ID: 12942536 [TBL] [Abstract][Full Text] [Related]
17. Regulation of P-TEFb elongation complex activity by CDK9 acetylation. Fu J; Yoon HG; Qin J; Wong J Mol Cell Biol; 2007 Jul; 27(13):4641-51. PubMed ID: 17452463 [TBL] [Abstract][Full Text] [Related]
18. RNA-driven cyclin-dependent kinase regulation: when CDK9/cyclin T subunits of P-TEFb meet their ribonucleoprotein partners. Michels AA; Bensaude O Biotechnol J; 2008 Aug; 3(8):1022-32. PubMed ID: 18655042 [TBL] [Abstract][Full Text] [Related]
19. Modulation of the Brd4/P-TEFb interaction by the human T-lymphotropic virus type 1 tax protein. Cho WK; Zhou M; Jang MK; Huang K; Jeong SJ; Ozato K; Brady JN J Virol; 2007 Oct; 81(20):11179-86. PubMed ID: 17686863 [TBL] [Abstract][Full Text] [Related]
20. Two-pronged binding with bromodomain-containing protein 4 liberates positive transcription elongation factor b from inactive ribonucleoprotein complexes. Schröder S; Cho S; Zeng L; Zhang Q; Kaehlcke K; Mak L; Lau J; Bisgrove D; Schnölzer M; Verdin E; Zhou MM; Ott M J Biol Chem; 2012 Jan; 287(2):1090-9. PubMed ID: 22084242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]